1
|
Wang J, Hui X, Liu H, Dai X. Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. CHEMOSPHERE 2024; 366:143504. [PMID: 39389375 DOI: 10.1016/j.chemosphere.2024.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNECR model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuesong Hui
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
2
|
Zhao Q, Hou HM, Zhang GL, Hao H, Zhu BW, Bi J. Defective UiO-66/cellulose nanocomposite aerogel for the adsorption of heterocyclic aromatic amines. Food Chem 2024; 449:139225. [PMID: 38599107 DOI: 10.1016/j.foodchem.2024.139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 μmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.
Collapse
Affiliation(s)
- Qiyue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
3
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Butova VV, Zdravkova VR, Burachevskaia OA, Tereshchenko AA, Shestakova PS, Hadjiivanov KI. In Situ FTIR Spectroscopy for Scanning Accessible Active Sites in Defect-Engineered UiO-66. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101675. [PMID: 37242091 DOI: 10.3390/nano13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Three UiO-66 samples were prepared by solvothermal synthesis using the defect engineering approach with benzoic acid as a modulator. They were characterized by different techniques and their acidic properties were assessed by FTIR spectroscopy of adsorbed CO and CD3CN. All samples evacuated at room temperature contained bridging μ3-OH groups that interacted with both probe molecules. Evacuation at 250 °C leads to the dehydroxylation and disappearance of the μ3-OH groups. Modulator-free synthesis resulted in a material with open Zr sites. They were detected by low-temperature CO adsorption on a sample evacuated at 200 °C and by CD3CN even on a sample evacuated at RT. However, these sites were lacking in the two samples obtained with a modulator. IR and Raman spectra revealed that in these cases, the Zr4+ defect sites were saturated by benzoates, which prevented their interaction with probe molecules. Finally, the dehydroxylation of all samples produced another kind of bare Zr sites that did not interact with CO but formed complexes with acetonitrile, probably due to structural rearrangement. The results showed that FTIR spectroscopy is a powerful tool for investigating the presence and availability of acid sites in UiO-66, which is crucial for its application in adsorption and catalysis.
Collapse
Affiliation(s)
- Vera V Butova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Videlina R Zdravkova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Olga A Burachevskaia
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Pavletta S Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Preparation of Hierarchically Porous PVP/ZIF-8 in Supercritical CO2 by PVP-Induced Defect-Formation Method for High-Efficiency Gas Adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Li Y, Li X, Wang B. Precisely introducing active sites into NU-1000 through linker incorporation for degrading sulfamethoxazole under visible-light photo-Fenton process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|