1
|
Settimi C, Zingaretti D, Verginelli I, Baciocchi R. Sulfidated zero-valent iron bimetals for passive remediation of chlorinated vapors in the subsurface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126202. [PMID: 40187526 DOI: 10.1016/j.envpol.2025.126202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
This study explores a novel application of sulfidated zero-valent iron (S-ZVI) bimetals for the treatment of chlorinated solvents in the vapor phase. The potential of these reactive materials was investigated through batch, column, and modeling tests. The materials were produced by disc milling of ZVI, sulfur (S), copper (Cu), and nickel (Ni) with molar ratios of 0.05 and 0.2. The reactivity of the materials was assessed through vapor degradation batch tests conducted under partially saturated conditions using trichloroethylene (TCE) as a model compound. Sulfidated materials with a 0.05 S/ZVI molar ratio were the most reactive, achieving up to 99 % degradation of TCE vapors within 18 h and first-order degradation constants of 5-5.7 d-1. Compared to the non-sulfidated materials, sulfidated ones remained reactive even after aging by exposure to air for 30 days. In all tests, C3-C6 hydrocarbons were detected as main byproducts, indicating β-elimination as the dominant TCE degradation pathway, with minor dichloroethylene and vinyl chloride amounts from the hydrogenolysis pathway. To evaluate the use of sulfidated bimetals as Horizontal Permeable Reactive Barriers (HPRBs) for treating chlorinated vapors in the subsurface, TCE diffusion column tests were performed using a 5 cm thick reactive layer of S-ZVI-Ni. These tests demonstrated up to 70 % degradation over 25 days. By integrating the column test results into an analytical model, it was estimated that an 18 cm HPRB could ensure up to 99 % degradation of TCE vapors. These findings highlight the potential of S-ZVI bimetals as an effective passive mitigation system for reducing chlorinated solvent vapor emissions from the subsurface.
Collapse
Affiliation(s)
- Clarissa Settimi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| | - Daniela Zingaretti
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy.
| | - Iason Verginelli
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| | - Renato Baciocchi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| |
Collapse
|
2
|
Gan S, Wang Z, Zheng C, Lin Z, Zhu AB, Lai B. Enhanced Treatment of Antimony Mine Wastewater by Sulfidated Micro Zerovalent Iron (S-mZVI). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21701-21710. [PMID: 39358310 DOI: 10.1021/acs.langmuir.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Commercial micron zerovalent iron (mZVI) and sulfur were used to prepare sulfidated micro zerovalent iron (S-mZVI) through ball milling. The corrosion potentials of mZVI and S-mZVI were -0.01 and -0.37 V, respectively, indicating S-mZVI possessed a stronger electron-donating ability. The practical antimony mine wastewater (C0(Sb(V)) = 3.8296 mg/L, pH = 8.29) was treated. If meeting the national discharge standard of 5 μg/L, 2.0 g/L mZVI and 1.6 g/L S-mZVI were required within 120 min. Passing N2 or reducing wastewater pH enhanced the treatment of Sb(V) by S-mZVI, in which the wastewater acidification was more effective. Once the wastewater pH was adjusted to 3.00, only 0.7 g/L S-mZVI and 40 min long time were needed to achieve the emission below 5 μg/L. Even S-mZVI underwent four cycles, and the final concentration of Sb(V) was as low as 4.67 μg/L. As the pHzpc value was 4.09 and the corrosion potential was -0.56 V at pH 3.0, the electron-donating ability of S-mZVI as well as the electrostatic attraction between the surface of S-mZVI and Sb(V) increased. Sulfidation of mZVI and then application under the acid condition significantly improved the treatment efficiency of Sb(V).
Collapse
Affiliation(s)
- Siyu Gan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ai-Bin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Zhou B, Fan B, Gong Z, Shao S, Zhou D, Gao S. Optimized preparation of Ni-Fe bm bimetallic particles by ball milling NiSO 4 and iron powder for efficient removal of triclosan. CHEMOSPHERE 2024; 360:142359. [PMID: 38782133 DOI: 10.1016/j.chemosphere.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 μM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.
Collapse
Affiliation(s)
- Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Fan B, Chen S, Zhu C, Zhu F, Huang D, Si D, Zhou B, Zhou D, He F, Gao S. Key role of hydrogen atoms in the preparation of sulfidated zero valent iron. WATER RESEARCH 2024; 256:121573. [PMID: 38608618 DOI: 10.1016/j.watres.2024.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Si Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Gong L, Ying S, Xia C, Pan K, He F. Carboxymethyl cellulose stabilization induced changes in particle characteristics and dechlorination efficiency of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2024; 355:141726. [PMID: 38521105 DOI: 10.1016/j.chemosphere.2024.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuaixuan Ying
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ke Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Zhu S, Yang K, Wang T, He S, Ma X, Deng J, Shao P, Li X, Ma X. Sulfidated nanoscale zero-valent iron derived from iron sludge for tetracycline removal: Role of sulfur and iron in reactivity and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123305. [PMID: 38195022 DOI: 10.1016/j.envpol.2024.123305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Iron sludge, produced during the drinking water treatment process, can be recycled as potential iron resource to create environmental functional material. In this study, sulfur-iron composites derived from iron sludge (S-Fe composites) was synthesized through sulfidation and carbonization, and used for the tetracycline (TC) removal under aerobic and anoxic conditions. The reactivities of these as-prepared products were strongly depended on pyrolysis temperatures. In particular, sulfidated nanoscale zero-valent iron loaded on carbon (S-nFe0@CIS) carbonized at 800 °C exhibited the highest TC removal efficiency with 86.6% within 30 min at circumneutral pH compared with other S-Fe composites. The crystalline structure of α-Fe0, FeSx and S0 as main active sites in S-nFe0@CIS promoted the degradation of TC. Moreover, the Fe/S molar ratios significantly affected the TC removal rates, which reached the best value as the optimal S/Fe of 0.27. The results illustrated that the optimized extent of sulfidation could facilitate electron transfer from nFe0 towards contaminants and accelerate Fe(III)/Fe(II) cycle in reaction system compared to bared nFe0@CIS. We revealed that removal of TC by S-nFe0@CIS in the presence of dissolved oxygen (DO) is mainly attributed to oxidation, adsorption and reduction pathways. Their contribution to TC removal were 31.6%, 25.2% and 28.8%, respectively. Furthermore, this adsorption-oxygenation with the formation of S-nFe0@CIS-TC* complexes was a surface-mediated process, in which DO was transformed by the structural FeSx on complex surface to •OH with the generation of H2O2 intermediate. The intermediates of TC and toxicity analysis indicate that less toxicity products generated through degradation process. This study provides a new reclamation of iron sludge and offers a new insight into the TC removal by S-nFe0@CIS under aerobic conditions.
Collapse
Affiliation(s)
- Shijun Zhu
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China; Mizuda Group Co. LTD, Huzhou, 313000, China
| | - Kaida Yang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Tenghui Wang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Sijia He
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xin Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
7
|
Gan S, Meng Y, Lin Z, Zheng C, Zhu A, Ganjidoust H, Ayati B, Huo A. Efficient Removal of Antimony(V) from Antimony Mine Wastewater by Micrometer Zero-Valent Iron. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14945-14957. [PMID: 37814856 DOI: 10.1021/acs.langmuir.3c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This paper investigates the effectiveness of two commercial micron zero-valent irons (mZVIs) in removing Sb(V) from antimony mine wastewater. The wastewater contains a range of complex components and heavy metal ions, including As(V), which can impact the removal efficiency of mZVI. The study aims to provide insights into actual working conditions and focuses on influencing factors and standard conditions. The results demonstrate that mZVI can reduce Sb(V) concentration in the mine wastewater from 3875.7 μg/L to below the drinking water standard of 5 μg/L within 2 h. Adding a small amount of mZVI every 30 min helps to maintain a high removal rate. The study confirms the existence of a reduction reaction by changing the atmospheric conditions of the reaction, and the addition of 1,10-phenanthroline highlights the important role of active Fe(II) in the adsorption and removal of Sb(V) by mZVI. Additionally, the paper presents an innovative experimental method of acid treatment followed by alkali treatment, which proves the interfacial reaction between mZVI and Sb(V). Overall, the study demonstrates that the removal of Sb(V) by mZVI entails a dual function of reduction and adsorption, highlighting the potential of mZVI in repairing Sb(V) in antimony mine wastewater.
Collapse
Affiliation(s)
- Siyu Gan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yifei Meng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd., Xi'an 710049, P. R. China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hossein Ganjidoust
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran 1411713116, Iran
| | - Bita Ayati
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-111, Tehran 1411713116, Iran
| | - Aidi Huo
- School of Water and Environment, Chang'an University, Xi'an 710054, P. R. China
| |
Collapse
|
8
|
Gao F, Zhang M, Ahmad S, Guo J, Shi Y, Yang X, Tang J. Tetrabromobisphenol A transformation by biochar supported post-sulfidated nanoscale zero-valent iron: Mechanistic insights from shell control and solvent kinetic isotope effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132028. [PMID: 37459757 DOI: 10.1016/j.jhazmat.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Post-sulfidated nanoscale zero-valent iron with a controlled FeSX shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI. These properties endowed S-nZVI/BC with highly reactive (∼8.9-13.2 times) and selective (∼58.4-228.9 times) over nZVI/BC in TBBPA transformation. BC modification improved the reactivity and selectivity of S-nZVI by 1.77 and 1.96 times, respectively. The difference of S-nZVI/BC in reactivity was related to hydrophobicity and electron transfer, particularly FeSX shell thickness and morphology. Optimal shell thickness of ∼32 nm allowed the maximum association between Fe0 core and exterior FeSX, resulting in superior reactivity. A thicker shell with abundant networks increased the roughness but decreased the surface area and electron transfer. The higher [S/Fe]surface and [S/Fe]particle were conducive to the selectivity, and [S/Fe]particle was more influential than [S/Fe]surface on selectivity upon similar hydrophobicity. The solvent kinetic isotope effects (SKIEs) exhibited that increasing [S/Fe]dose tuned the relative contributions of atomic H and electron in TBBPA debromination but failed to alter the dominant debromination pathway (i.e., direct electron transfer) in (S)-nZVI/BC systems. Mechanism of electron transfer rather than atomic H contributed to higher selectivity. This work demonstrated that S-nZVI/BC was a prospective material for the remediation of TBBPA-contaminated groundwater.
Collapse
Affiliation(s)
- Feilong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National Engineering Laboratory for Site Remediation Technologies, China.
| |
Collapse
|