1
|
D'Almeida AP, de Albuquerque TL, Rocha MVP. Recent advances in Emulsan production, purification, and application: Exploring bioemulsifiers unique potentials. Int J Biol Macromol 2024; 278:133672. [PMID: 38971276 DOI: 10.1016/j.ijbiomac.2024.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Bioemulsifiers are compounds produced by microorganisms that reduce the interfacial forces between hydrophobic substances and water. Due to their potential in the pharmaceutical and food industries and their efficiency in oil spill remediation, they have been the subject of study in the scientific community while being safe, biodegradable, and sustainable compared to synthetic options. These biomolecules have high molecular weight and polymeric structures, distinguishing them from traditional biosurfactants. Emulsan, a bioemulsifier exopolysaccharide, is produced by Acinetobacter strains and is highly efficient in forming stable emulsions. Its low toxicity and high potential as an emulsifying agent promote its application in pharmaceutical and food industries as a drug-delivery vehicle and emulsion stabilizer. Due to the high environmental impact of oil spills, bioemulsifiers have great potential for environmental applications, such as bioremediation. This unique feature gives them a distinct mechanism of action in forming emulsions, resulting in minimal environmental impact. A better understanding of these aspects can improve the use of bioemulsifiers and environmental remediation in various industries. This review will discuss the production and characterization of Emulsan, focusing on recent advancements in cultivation conditions, purification techniques, compound identification, and ecotoxicity.
Collapse
|
2
|
Mohseni Sani N, Talaee M, Akbari A, Ashoori F, Zamani J, Kermani AA, Shahbani Zahiri H, Presley J, Vali H, Akbari Noghabi K. Unveiling the structure-emulsifying function relationship of truncated recombinant forms of the SA01-OmpA protein opens up a new vista in bioemulsifiers. Microbiol Spectr 2024; 12:e0346523. [PMID: 38206002 PMCID: PMC10846152 DOI: 10.1128/spectrum.03465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
The emulsifying ability of SA01-OmpA (outer membrane protein A from Acinetobacter sp. SA01) was found to be constrained by challenges like low production efficiency and high costs associated with protein recovery from E. coli inclusion bodies, as described in our previous study. The present study sought to benefit from the advantages of the targeted truncating of SA01-OmpA protein, taking into account the reduced propensity of protein expression as inclusion bodies and cytotoxicity. Here, the structure and activity relationship of two truncated recombinant forms of SA01-OmpA protein was unraveled through a hybrid approach based on experimental data and computational methodologies, representing an innovative bioemulsifier with advantageous emulsifying activity. The recombinant truncated SA01-OmpA variants were cloned and heterologously expressed in E. coli host cells and subsequently purified. The results showed increased emulsifying activity of N-terminally truncated SA01-OmpA (NT-OmpA) compared to full-length SA01-OmpA. Molecular dynamics (MD) simulations analysis demonstrated a direct correlation between the C-terminally truncated SA01-OmpA (CT-OmpA) and its expression as inclusion bodies. Analysis of the structure-activity relationship of truncated variants of SA01-OmpA revealed that, compared to the full-length protein, deletion of the β-barrel portion from the N-terminal of SA01-OmpA increased the emulsifying activity of NT-OmpA while lowering its expression as inclusion bodies. Contrary to the full-length protein, the N-terminally truncated SA01-OmpA was not as cytotoxic, according to the MTT assay, FCM analysis, and AO/EB staining. The findings of this extensive study advance our knowledge of SA01-OmpA at the molecular level as well as the design and development of efficient bioemulsifiers.IMPORTANCEPrevious research (Shahryari et al. 2021, mSystems 6: e01175-20) introduced and characterized the SA01-OmpA protein as a multifaceted protein with a variety of functions, including maintaining cellular homeostasis under oxidative stress conditions, biofilm formation, outer membrane vesicles (OMV) biogenesis, and beneficial emulsifying capacity. By truncating the SA01-OmpA protein, the current study presents a unique method for developing protein-type bioemulsifiers. The findings indicate that the N-terminally truncated SA01-OmpA (NT-OmpA) has the potential to fully replace full-length SA01-OmpA as a novel bioemulsifier with significant emulsifying activity. This study opens up a new frontier in bioemulsifiers, shedding light on a possible relationship between the structure and activity of SA01-OmpA truncated forms.
Collapse
Affiliation(s)
- Naeema Mohseni Sani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahbubeh Talaee
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faranak Ashoori
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali A. Kermani
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - John Presley
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, Montreal, Québec, Canada
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
3
|
Li JY, Liu YF, Zhou L, Gang HZ, Liu JF, Sun GZ, Wang WD, Yang SZ, Mu BZ. Structural Diversity of the Lipopeptide Biosurfactant Produced by a Newly Isolated Strain, Geobacillus thermodenitrifcans ME63. ACS OMEGA 2023; 8:22150-22158. [PMID: 37360472 PMCID: PMC10286266 DOI: 10.1021/acsomega.3c02194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The genus Geobacillus is active in degradation of hydrocarbons in thermophilic and facultative environments since it was first reported in 1920. Here, we report a new strain, Geobacillus thermodenitrificans ME63, isolated from an oilfield with the ability of producing the biosurfactant. The composition, chemical structure, and surface activity of the biosurfactant produced by G. thermodenitrificans ME63 were investigated by using a combination of the high-performance liquid chromatography, time-of-flight ion mass spectrometry, and surface tensiometer. The biosurfactant produced by strain ME63 was identified as surfactin with six variants, which is one of the representative family of lipopeptide biosurfactants. The amino acid residue sequence in the peptide of this surfactin is N-Glu → Leu → Leu → Val → Leu → Asp → Leu-C. The critical micelle concentration (CMC) of the surfactin is 55 mg L-1, and the surface tension at CMC is 35.9 mN m-1, which is promising in bioremediation and oil recovery industries. The surface activity and emulsification properties of biosurfactants produced by G. thermodenitrificans ME63 showed excellent resistance to temperature changes, salinity changes, and pH changes.
Collapse
Affiliation(s)
- Jia-Yi Li
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Hong-Ze Gang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Jin-Feng Liu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Daqing
Huali Biotechnology Co., Ltd, Daqing, Heilongjiang 163511, China
| | - Gang-Zheng Sun
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Wei-Dong Wang
- Research
Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257088, China
| | - Shi-Zhong Yang
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State
Key Laboratory of Bioreactor Engineering and School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai 200237, China
- Engineering
Research Center of MEOR, East China University
of Science and Technology, Shanghai 200237, China
| |
Collapse
|