1
|
Han Y, Yang H, Zhang Q, Jiao T. Enhancement of sulfate radicals degrading phenol in water by an external electric field: a study by DFT calculations. Phys Chem Chem Phys 2025; 27:8148-8157. [PMID: 40176470 DOI: 10.1039/d4cp04800h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
This study investigates the effect of an external electric field (EF) on the oxidative properties of sulfate radicals (SRs) generated from activated persulfate during the degradation of phenol by discharge plasma. In this paper, density functional theory (DFT) was employed to explore the variations in the reaction rate of phenol degradation by SRs under the influence of an external EF. Additionally, free energy barriers, spin densities, dipole moments (DMs), frontier molecular orbitals, and electrostatic potentials on van der Waals (vdW) surfaces were analyzed to elucidate the mechanisms driving the changes in reaction rate. It was found that discharge plasma with the +X-axis EF increased the degradation rate of phenol, while the degradation rate declines when the -X-axis EF is applied. As the strength of the +X-axis EF increased, a corresponding decrease in the free energy barrier and HOMO-LUMO gap was observed, alongside increases in the DM, spin density, and electrostatic potential. It can be concluded that the application of the +X-axis EF decreases the thermal stability of the phenol degradation system while enhancing electrostatic interactions, thereby leading to an increase in reactivity.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao Hebei 066004, P. R. China.
- School of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Huiqing Yang
- School of Electrical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao Hebei 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao Hebei 066004, P. R. China.
| |
Collapse
|
2
|
Huang Y, Bu L, Ao J, Xiao R, Zhou S, Zhu S. Beyond the reaction kinetics: Interpretable machine learning reveals unique pathways of sulfate and carbonate radicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137899. [PMID: 40120258 DOI: 10.1016/j.jhazmat.2025.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Sulfate radical (SO4•-) mediated advanced oxidation process (AOP) represents a cutting-edge and energy-efficient technology for wastewater treatment with carbonate radical (CO3•-) as coexisting species in alkaline waters. The reaction mechanism of both radicals with trace organic contaminants (TrOCs) has long been accepted to occur mainly through single electron transfer (SET). However, recent studies suggested a more complex mechanism than previously thought. In this study, we conduct a thorough investigation into their reaction mechanisms, and our results reveal that the reactivity of both radicals with benzene derivatives aligns with electrophilic substitution patterns, with the presence of electron-donating groups enhancing the trend. Extending beyond benzene derivatives, we formulate linear free-energy relationships (LFERs) for a broader range of TrOCs by means of machine learning. Our results highlight that SET pathway is the rate-determining step for the reactions with a more pronounced effect in reactions initiated by CO3•- than those by SO4•-, as other pathways are as equally important as SET when SO4•- reacts with TrOCs with hydroxyl, amine, and carbonyl groups. These in-depth insights not only help to elucidate the origin of the discrepancies but also enable a better control over reactive radicals, holding the potential to the controllable byproduct transformation.
Collapse
Affiliation(s)
- Yuanxi Huang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Jian Ao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Qian J, Zhang X, Jia Y, Xu H, Pan B. Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1060-1079. [PMID: 39761191 DOI: 10.1021/acs.est.4c10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications. Nevertheless, this industrially accepted protocol is far from sustainable because of the excessive input of chemicals and/or energy as well as the unregulated carbon emission. Recently, there have been emerging studies on the removal of organic pollutants via a completely different pathway, i.e., polymerization, meaning that the target pollutants undergo oxidative polymerization reactions to generate polymeric products. These studies have collectively shown that compared to the conventional mineralization pathway, the polymerization pathway allows more efficient removal of target pollutants, largely reduced input of chemicals, and suppressed carbon emission. In this review, we aim to provide a comprehensive examination of the fundamentals of the oxidative polymerization process, current state-of-the-art strategies for regulation of the polymerization pathway from both kinetic and thermodynamic perspectives, and resource recovery of the formed polymeric products. In the end, the limitations of the polymerization process for pollutant removal are discussed, with perspectives for future studies. Hopefully, this review could not only provide critical insight for the advancement of polymerization-oriented technologies for removal of more organic pollutants in a greener manner but also stimulate more paradigm innovations for low-carbon water treatment.
Collapse
Affiliation(s)
- Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Jia
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hui Xu
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Ma Y, Li M, Huo Y, Zhou Y, Gu Q, Wen N, He M. Combination of oxidative and reductive effects of phenolic compounds on the degradation of aniline disinfection by-products by free radicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135686. [PMID: 39236530 DOI: 10.1016/j.jhazmat.2024.135686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
In this study, we selected 13 phenolic compounds containing -COOH, -CHO, -OH, and -COCH3 functional groups as model compounds for dissolved organic matter (DOM), and explored the redox reactions during the co-degradation of phenolic compounds with aniline disinfection by-products (DBPs) at the molecular level. When phenolic compounds and aniline DBPs were degraded, phenoxy radicals and aniline radicals were the most important intermediates. Phenoxy radicals can degrade aniline DBPs via hydrogen atom abstraction (HAA) reactions, and the reaction rates were related to the reduction potentials of the compounds. Compounds containing electron-withdrawing groups were more likely to oxidize aniline DBPs. Aniline DBPs were more easily degraded by phenoxy radicals when they contained electron-donating groups, and the increase in the number of chlorine atoms inhibited the reaction rates of aniline DBPs degradation by phenoxy radicals. Although phenolic compounds can reduce aniline DBPs, there was no significant correlation between the reaction rates and the reduction potentials of the compounds. Considering the redox effects of phenolic compounds on aniline DBPs, co-degradation simulations showed that phenolics inhibited the degradation efficiency of aniline DBPs. This work provided new insights into the transformation mechanisms and degradation efficiencies of DOM and aniline DBPs when they were co-degraded.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Rani R, Kumar D. Recent advances in degradation of N,N-diethyl-3-toluamide (DEET)-an emerging environmental contaminant: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:238. [PMID: 38319467 DOI: 10.1007/s10661-024-12414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
N,N-Diethyl-3-toluamide (DEET) is a commonly used insect repellent, which acts as an organic chemical contaminant in water and considered as an emerging contaminant which has been observed worldwide. It gets discharged into the environment through sewage waste. The various methods have been used to degrade DEET, such as UV based, ozonation, photocatalytic degradation, and biodegradation (based on the metabolic activity of fungi and bacteria). However, less research has been done on the degradation of DEET by deploying nanoparticles. Therefore, biodegradation and nanotechnology-based methods can be the potential solution to remediate DEET from the environment. This review is an attempt to analyze the routes of entry of DEET into the atmosphere and its environmental health consequences and to explore physical, chemical, and biological methods of degradation. Furthermore, it focuses on the various methods used for the biodegradation of the DEET, including their environmental consequences. Future research is needed with the application of biological methods for the degradation of DEET. Metabolic pathway for biodegradation was explored for the new potent microbial strains by the application of physical, chemical, and microbial genomics; molecular biology; genetic engineering; and genome sequencing methods.
Collapse
Affiliation(s)
- Ritu Rani
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, Haryana, India.
| |
Collapse
|
6
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
7
|
Ma Y, Li M, Huo Y, Zhou Y, Jiang J, Xie J, He M. Differences in the degradation behavior of disinfection by-products in UV/PDS and UV/H 2O 2 processes and the effect of their chemical properties. CHEMOSPHERE 2023; 345:140457. [PMID: 37839744 DOI: 10.1016/j.chemosphere.2023.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Weihai Water Conservancy Service Center, Weihai, 264200, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|