1
|
Cao Y, Wang Y, Wei S, Li M, Wang H, Zhou F, Li J, Huang J. Substituted triazine-based covalent organic frameworks aerogels for the efficient adsorption and catalytic degradation of tetracycline hydrochloride. J Colloid Interface Sci 2025; 686:978-989. [PMID: 39923702 DOI: 10.1016/j.jcis.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Covalent organic frameworks (COFs) are efficient for the adsorption and catalytic degradation of antibiotic from water, while they are often limited by mass transfer, low light capture rates, and difficulties in solid-liquid separation. Herein, three triazine-based COFs aerogels with different electron effect substituted groups were synthesized at room temperature, and they were applied for the adsorption and catalytic degradation of tetracycline hydrochloride (TCH). The resulting COFs aerogels with the electron-withdrawing bromine groups (Br-NCOFA) possessed strong binding sites, high Brunauer-Emmett-Teller surface area and distinctive three dimensional layered structure, and hence it achieved 439 mg/g for the maximum capacity of TCH at 298 K. The equilibrium time maintained within 30 min, significantly outperformed the powdered form (384 mg/g, 180 min). The adsorption mechanism clarified that halogen bonding, pore filling and π-π interaction drove the entire adsorption process. Notably, since the unique three-dimensional networks allow for the multiple scattering and reflection of the light, the aerogels can capture more light energy. The photocatalytic efficiency of TCH by the aerogels (86 %) under visible-light irradiation was much greater than the powders (35 %).
Collapse
Affiliation(s)
- Yiwen Cao
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Shiyuan Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Meng Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Fa Zhou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China.
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
3
|
Wang L, Du H, Wang X, Hao D, Li Q, Zhu H, Li C, Wang Q. A critical review of COFs-based photocatalysis for environmental remediation. ENVIRONMENTAL RESEARCH 2025; 272:121166. [PMID: 39978624 DOI: 10.1016/j.envres.2025.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous crystalline polymers formed through covalent bonding of molecular building blocks. Numerous fabrication strategies have been developed, including solvothermal, ionothermal, microwave, mechanochemical, and sonochemical methods, alongside ligand substitution and post-modification techniques, which allow for precise control over the structures and properties of COFs. The exceptional physicochemical stability, large specific surface area, broad visible light absorption, and extended π-conjugated systems have sparked significant interest in photocatalytic applications. Recently, COFs have shown remarkable efficacy in environmental remediation, demonstrating the ability to degrade a wide range of organic pollutants, including dyes, antibiotics, and drugs, as well as to reduce/oxidize heavy metals such as Cr(VI), U(VI), and As(III), in addition to targeting biological pollutants. This review comprehensively explores recent advancements in COFs-based photocatalysis, covering synthetic methods, COF types, modification method, theoretical calculations, environmental applications, and underlying mechanisms. Additionally, the challenges and opportunities for COFs as a robust, cost-effective technology in practical applications was discussed, and offering valuable insights for researchers in environmental remediation, materials science, and photocatalysis.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Du
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqing Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Qiang Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Chunjuan Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qi Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Zhang W, Wang G, Yang H, Ma R, Wang H. Covalent triazine frameworks as particle electrode for three-dimensional photoelectrocatalytic degradation of oxytetracycline: Synergy effects, pathway, and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123219. [PMID: 39500167 DOI: 10.1016/j.jenvman.2024.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Photoelectrocatalysis has been widely employed for degrading antibiotics due to its high efficiency. However, the application is significantly impeded by the rapid recombination of photogenerated charge carriers and the limited surface areas of photoelectrodes. In the study, high crystallinity covalent triazine frameworks were fabricated at low temperature of 150 °C and firstly used as particle photoelectrode in the three-dimensional photoelectrochemical reactor to degrade oxytetracycline (OTC). SEM, TEM, XRD, XPS, and FT-IR confirmed the successful synthesis of high crystallinity covalent triazine frameworks. Compared to CTF-120 (71.2%) and CTF-180 (46.9%), CTF-150 exhibited excellent OTC removal. Electrochemical impedance, UV-vis absorption spectra, and Mott-Schottky tests showed that CTF-150 demonstrated more wide light absorption range of 501 nm and narrow bandgap of 2.52 eV, and smaller Rct value under illumination, in comparing to CTF-120 and CTF-180. When the initial concentration of OTC was 50 mg L-1, the 86.2% of OTC removal and 62.7% of mineralization were obtained under light irradiation (λ > 420 nm), current of 10 mA, pH of 6.4, electrolyte of 0.1 M Na2SO4. The synergy effect between photocatalytic and electrocatalytic processes of CTF-150 not only enhanced by 38.5% current efficiency but also reduced energy consumption to 1.90 kWh m-3. CTF-150 had a wide range of acid-base application and displayed resistance on coexisting ions. Electron spin resonance detection, quenching experiments, and probe experiments illustrated that h+, •O2-, 1O2, and •OH contributed to the degradation of OTC and the generation pathways of •O2-, 1O2, and •OH were verified. Moreover, •O2-, 1O2, and h+ were the main reactive species responsible for OTC removal, while 1O2 was for OTC mineralization. Based on high-performance liquid chromatography-tandem mass spectrometry detection, OTC with benzene ring was decomposed to opening ring products. The acute toxicity, developmental toxicity, bioaccumulation factor and mutagenicity of OTC and its intermediates using T.E.S.T. showed the toxicity of 82.35% degradation products decreased.
Collapse
Affiliation(s)
- Wenwen Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China
| | - Guangyang Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Heng Yang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Ran Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
5
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
6
|
Gao CJ, Li ZX, Mou WL, Li YY, Jin GY, Fan SJ, Pan X, Han HL, Li ZF, Liu JM, Wang G, Yang W, Jin QH. Synthesis of Silver(I) Complexes through In Situ Reactions of dppeda with dmp in the Presence of Silver Halides for Photocatalysis. Inorg Chem 2024; 63:18689-18698. [PMID: 39303191 DOI: 10.1021/acs.inorgchem.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
Collapse
Affiliation(s)
- Cheng-Jie Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wen-Long Mou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guan-Yu Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Jie Fan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian-Ming Liu
- Mathematical Sciences, Peking University, Beijing 100871, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- The State Key Laboratory of Rare Earth Resource Utilization, Changchun, Jilin 130000, China
| |
Collapse
|
7
|
Bi RX, Peng ZH, Lei L, Wang XX, Liu X, Zhang L, Liang RP, Qiu JD. Enhanced photocatalytic U(VI) reduction via double internal electric field in CoWO 4/covalent organic frameworks p-n heterojunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134869. [PMID: 38870857 DOI: 10.1016/j.jhazmat.2024.134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Photoreduction of highly toxic U(VI) to less toxic U(IV) is crucial for mitigating radioactive contamination. Herein, a CoWO4/TpDD p-n heterojunction is synthesized, with TpDD serving as the n-type semiconductor substrate and CoWO4 as the p-type semiconductor grown in situ on its surface. The Fermi energy difference between TpDD and CoWO4 provides the electrochemical potential for charge-hole separation. Moreover, the Coulombic forces from the distinct carrier types between the two materials synergistically facilitate the transfer of electrons and holes. Hence, an internal electric field directed from TpDD to CoWO4 is established. Under photoexcitation conditions, charges and holes migrate efficiently along the curved band and internal electric field, further enhancing charge-hole separation. As a result, the removal capacity of CoWO4/TpDD increases from 515.2 mg/g in the dark to 1754.6 mg/g under light conditions. Thus, constructing a p-n heterojunction proves to be an effective strategy for remediating uranium-contaminated environments.
Collapse
Affiliation(s)
- Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhi-Hai Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Lan Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Xiao-Xing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
8
|
Xiao SJ, Huang J, Qiu AT, Liu GZ, Zhang L, Wu T, Shi YD, Qiu JD. Advanced "turn-on" colorimetric uranium platform based on the enhanced nanozyme activity of a donor-acceptor structured covalent organic framework. Anal Chim Acta 2024; 1302:342503. [PMID: 38580412 DOI: 10.1016/j.aca.2024.342503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The increasing uranium containing wastes generated during uranium mining and finishing pose a huge threat to the environment and human health, and thus robust strategies for on-site monitoring of uranium pollutant are of great significance for environmental protection around uranium tailings. RESULTS Herein, a facile "turn-on" colorimetric platform that can achieve uranium detection by spectrometry and naked eyes was developed based on the uranium-enhanced nanozyme activity of covalent organic framework (JUC-505). Thanks to the extended π-conjugated skeleton and donor-acceptor (D-A) structure, JUC-505 exhibited superior photo-activated nanozyme activity, which would be prohibited when the cyano group in JUC-505 skeleton was transformed to the amidoxime group. Further results elucidated that the coordination of uranium with amidoxime groups led to the electron transfer between uranium and the JUC-505-AO skeleton, and thus significantly restored the nanozymatic activity of JUC-505-AO with the subsequent remarkable color changes. Moreover, the uranium concentrations in uranium tailing wastewater detected by the present "turn-on" colorimetric method were well agreed with those by ICP-MS, demonstrating a high accuracy of the present method in real samples. SIGNIFICANCE The D-A structured JUC-505 with superior photocatalytic property and nanozymatic activity was applied to facilitate colorimetric detection of uranium, which displays the advantages of low detection limit, excellent selectivity, fast response and simple operation for uranium detection in real samples, and shows a great potential in on-site monitoring of uranium pollutant around uranium tailings as well as nuclear power plant.
Collapse
Affiliation(s)
- Sai Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jing Huang
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - An Ting Qiu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Guang Zhou Liu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, 330031, Jiangxi, China.
| | - Ting Wu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Ya Di Shi
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jian-Ding Qiu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
9
|
Xu Z, Dong W, Cui X, Duan Q. Three-dimensional donor-acceptor conjugated porous polymers based on metal-porphyrin and triazine for highly effective photodegradation of organic pollutants in water. CHEMOSPHERE 2024; 355:141801. [PMID: 38552804 DOI: 10.1016/j.chemosphere.2024.141801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Three-dimensional donor-acceptor (D-A) type conjugated porous polymers (CPPs) was designed and synthesized via imine condensation of copper tetraaminoporphyrin (CuTAPP) as donor and 1,3,5-tris-(4-formyl phenyl) triazine (TFPT) as acceptor, named as CuPT-CPP. The CuPT-CPP possesses a high specific surface area (73.7 m2/g) and excellent photophysical properties. The simultaneous introduction of the organometallic molecules and D-A structures in CuPT-CPP could be broadened the visible-light response range (400-800 nm) and facilitated efficient photogenerated carrier separation and transportation. As heterogeneous photocatalysts, CuPT-CPP has excellent photocatalytic performances under visible light irradiation, leading to excellent model pollutant rhodamine B degradation efficiency up to about 100% in 3 h, it has superb stability and reusability during the photocatalytic processes, and CuPT-CPP also exhibited broad substrate adaptability, which could photocatalytic degradation of methylene blue (MB), methyl orange (MO), and tetracycline hydrochloride (TC). This work indicates that three-dimensional D-A type porphyrin- and triazine-based CuPT-CPP has great potential in the practical application of photocatalysis.
Collapse
Affiliation(s)
- Zhilin Xu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xu Cui
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| |
Collapse
|
10
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Zhang Y, Fu L, Tian F, Huang Y, Li X, Gu Y, Yang G, Qu L, Yang H. Designing carbon nanotube sponge/Au@MgO 2 for surface-enhanced Raman scattering detection and fenton-like degradation of organic pollutants. Talanta 2023; 265:124835. [PMID: 37385189 DOI: 10.1016/j.talanta.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
With the acceleration of industry and agriculture process, the massive emission of organic pollutants is a major problem which seriously restricts the sustainable development of society. Rapid enrichment, efficient degradation and sensitive detection are three key steps to solve the problem of organic pollutants, while developing a simple method integrating the above three capabilities is still a challenge. Herein, a three-dimensional carbon nanotube sponge decorated with magnesium peroxide and gold nanoparticles (CNTs/Au@MgO2 sponge) was prepared for surface enhanced Raman scattering (SERS) detection and degradation of aromatic organics by advanced oxidation processes. The CNTs/Au@MgO2 sponge with porous structures adsorbed molecules rapidly through π-π and electrostatic interaction, thus more aromatic molecules were driven to the hot-spot areas for highly sensitive SERS detection. A detection of limit with 9.09 × 10-9 M was achieved for rhodamine B (RhB). The adsorbed molecules were degraded by an advanced oxidation process utilizing hydrogen peroxide produced by MgO2 nanoparticles under acidic condition with 99% efficiency. In addition, the CNTs/Au@MgO2 sponge exhibited high reproducibility with the relative standard deviation (RSD) at 1395 cm-1 of approximately 6.25%. The results showed the sponge can be used to effectively track the concentration of pollutants during the degradation process and maintain the SERS activity by re-modifying Au@MgO2 nanomaterials. Furthermore, the proposed CNTs/Au@MgO2 sponge demonstrated the simultaneous functions of enrichment, degradation, and detection for aromatic pollutants, thus significantly expanding the potential applications of nanomaterials in environmental analysis and treatment.
Collapse
Affiliation(s)
- Yingdi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lijie Fu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Fei Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yi Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xialian Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yingqiu Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Haipeng Yang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
12
|
Karimi D, Khajeh M, Oveisi AR, Bohlooli M, Khatibi A, Neyband RS, Luque R. Sulfur-functionalized porphyrin-based covalent organic framework as a metal-free dual-functional catalyst for photodegradation of organophosphorus pesticides under visible-LED-light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122109. [PMID: 37379874 DOI: 10.1016/j.envpol.2023.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Parathion and diazinon are two significant organophosphorus pesticides broadly used in agriculture. However, these compounds are toxic and can enter into the environment and atmosphere via various processes. Herein, we synthesized and post-functionalized a porphyrinic covalent organic framework (COF), COF-366, with elemental sulfur under solvent-free conditions to give polysulfide-functionalized COF-366, namely PS@COF. The resulting material consisting of porphyrin sensitizer and sulfur nucleophilic sites was used as a dual-functional heterogeneous catalyst for the degradation of these organic compounds using visible-LED-light. Accordingly, the effects of several pertinent parameters such as pH (3-9), the catalyst dosage (5-30 mg), time (up to 80 min), and substrate concentration (10-50 mg L-1) were studied in detail and optimized. The post-modified COF showed excellent photocatalytic activity (>97%) in the detoxification of diazinon and parathion for 60 min at pH 5.5. Kinetic studies indicated a fast degradation rate with pseudo-second order model for 20 mg L-1 of diazinon and parathion. The total organic carbon detection and gas chromatography-mass spectrometry (GC-MS) confirmed the organic intermediates and byproducts formed during the process. PS@COF displayed good recyclability and high reusable efficiency for six cycles without a noteworthy lose in its catalytic activity, owing to its robust structure.
Collapse
Affiliation(s)
- Danial Karimi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mousa Bohlooli
- Department of Cell & Molecular Sciences, Kharazmi University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Razieh Sadat Neyband
- Department of Physical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|