1
|
Liang Y, Feng A, Al-Dhabi NA, Zhang J, Xing W, Chen T, Han Y, Zeng G, Tang L, Tang W. Efficient antibiotic tetracycline degradation and toxicity abatement via the perovskite-type CaFe xNi 1-xO 3 assisted heterogeneous electro-Fenton system. WATER RESEARCH 2025; 279:123432. [PMID: 40054283 DOI: 10.1016/j.watres.2025.123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 05/06/2025]
Abstract
As one of the emerging contaminants, antibiotics are posing a great threat to the human health and environment, which requires effective treatment methods. Heterogeneous electro-Fenton is a promising technique for organic contaminant elimination, but preparation of an appropriate heterogeneous electro-Fenton catalyst still remains challenging. In this work, the feasibility of perovskite-type CaFexNi1-xO3 as heterogeneous electro-Fenton catalyst for tetracycline (TC) removal and toxicity abatement has been explored. It was found that, among the examined CaFexNi1-xO3 catalysts with different Ni doping amount, CaFe3/4Ni1/4O3 exhibited the best performance, achieving 92.1 % TC removal within 30 min without pH adjustment in the presence of 0.05 M Na2SO4 electrolyte. Choosing Cl--containing electrolyte enabled further improvement towards TC elimination. In addition, the CaFe3/4Ni1/4O3 based heterogeneous electro-Fenton system presented other advantages including good recyclability and universal applicability, and significant toxicity reduction (verified via both ECOSAR simulation and soybean germination test). The TC degradation pathways were elucidated through identification of intermediate products and DFT calculations. Mechanism investigations revealed that there existed a strong synergy between Fe and Ni, and ·OH and ·O2- played the primary roles in the system while 1O2 played an auxiliary role. This study presented a promising heterogeneous electro-Fenton catalyst for degradation of antibiotics such as tetracycline.
Collapse
Affiliation(s)
- Yuling Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Aochen Feng
- Hubei Xiecheng Transportation Environmental Protection Co., Ltd., Wuhan 430040, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jing Zhang
- MCC Capital Engineering and Research Incorporation Limited, Beijing 100176, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Tao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuxuan Han
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Li Q, Zhou H, Li Z, Liu A, Wang E, Wu Y, Tang X, Du H, Jin L, Zhu H, Ni B, Wang Q. Efficient photocatalytic degradation of antibiotics using Z-scheme MIL-88(Fe)/Ti 3C 2/MoO 3: Mechanistic insights and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137051. [PMID: 39756323 DOI: 10.1016/j.jhazmat.2024.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Antibiotic residues cause water contamination and disrupt aquatic ecosystems. Herein, we reported the fabrication of a novel Z-scheme heterojunction, MIL-88A(Fe)/Ti3C2/MoO3 (MTO), for safe and efficient removal of antibiotics. Ti3C2 was introduced into the MIL-88A(Fe)/MoO3 (MO) heterojunction as an electronic mediator to accelerate charge separation. Consequently, the ternary MTO achieved a tetracycline (TC) degradation rate 2.5 times higher than that of MO. Notably, the MTO heterojunction maintained high TC degradation efficiency over 36 consecutive hours without significant decline. Photogenerated holes, hydroxyl radicals, and superoxide radicals synergistically led to efficient and deep mineralization of TC. Furthermore, toxicity assessments were performed using Toxicity Estimation Software Tool (T.E.S.T.), bacteria (S. aureus and E. coli) cultivation, wheat germination and cultivation. The results all confirmed the safe degradation of TC. Therefore, this study provides a promising strategy for photocatalytic removal of antibiotics and promotes sustainable water purification technologies.
Collapse
Affiliation(s)
- Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Zhou
- Hangzhou Hangda Environmental Protection Engineering Co., Ltd., Hangzhou, Zhejiang 310018, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Aoxiang Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Erpeng Wang
- Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264005, China
| | - Yanling Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Limin Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou 318000, China
| | - Bingjie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Liu Z, Gao W, Liu L, Gao Y, Zhang C, Chen L, Lv F, Xi J, Du T, Luo L, Zhuo J, Zhang W, Ji Y, Shen Y, Liu W, Wang J, Luo M, Guo S. Spin polarization induced by atomic strain of MBene promotes the ·O 2- production for groundwater disinfection. Nat Commun 2025; 16:197. [PMID: 39747146 PMCID: PMC11696085 DOI: 10.1038/s41467-024-55626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Superbugs in groundwater are posing severe health risks through waterborne pathways. An emerging approach for green disinfection lies at photocatalysis, which levers the locally generated superoxide radical (·O2-) for neutralization. However, the spin-forbidden feature of O2 hinders the photocatalytic generation of active ·O2-, and thus greatly limited the disinfection efficiency, especially for real groundwater with a low dissolved oxygen (DO) concentration. Herein, we report a class of strained Mo4/3B2-xTz MBene (MB) with enhanced adsorption/activation of molecular O2 for photocatalytic disinfection, and find the strain induced spin polarization of In2S3/Mo4/3B2-xTz (IS/MB) can facilitate the spin-orbit hybridization of Mo sites and O2 to overcome the spin-forbidden of O2, which results in a 16.59-fold increase in ·O2- photocatalytic production in low DO condition (2.46 mg L-1). In particular, we demonstrate an In2S3/Mo4/3B2-xTz (50 mg)-based continuous-flow-disinfection system stably operates over 62 h and collects 37.2 L bacteria-free groundwater, which represents state-of-the-art photodisinfection materials for groundwater disinfection. Most importantly, the disinfection capacity of the continuous-flow-disinfection system is 25 times higher than that of commercial sodium hypochlorite (NaOCl), suggesting the practical potential for groundwater purification.
Collapse
Affiliation(s)
- Zhaoli Liu
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Wenzhe Gao
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Lizhi Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xian, China
| | - Yixuan Gao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Yizhong Shen
- Hefei University of Technology, School of Food & Biological Engineering, 230009, Hefei, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, China.
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
4
|
Wang P, Gu X, Li S, Shen J, Liu J, Gong C, Chen Y. Deep degradation of sulfamethoxazole by the Fe-Co/γ-Al 2O 3-catalysed photo-Fenton system. ENVIRONMENTAL TECHNOLOGY 2024; 45:3924-3939. [PMID: 37487236 DOI: 10.1080/09593330.2023.2237658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
The heterogeneous photo-Fenton system using Fe-Co/γ-Al2O3 as a catalyst was applied in the study of sulfamethoxazole(SMX) degradation. The morphology, structure, elemental composition and metal valence distribution of Fe-Co/γ-Al2O3 were found to be relatively stable before and after the reaction. The highest SMX degradation efficiency and mineralization (The ratio of organic matter being oxidized to carbon dioxide and water) were obtained under the conditions of 15% Fe-Co loading rate, 1:1 mass ratio of Fe and Co, 1 g/L catalyst dosage, 1.5 mL 30% H2O2 dosage, 18 W UV lamp power and 60 min reaction time, which were 98% and 66%, respectively. Radical quenching experiments and electronic paramagnetic resonance (EPR) characterization revealed that ·OH played an important role in the degradation and mineralization SMX in the Fe-Co/γ-Al2O3 heterogeneous photo-Fenton system. Combined with the analysis of N, S and intermediate products, there may be three degradation pathways of SMX in the heterogeneous photo-Fenton system. This work provides a technical reference for realizing the efficient degradation and mineralization of SMX in a heterogeneous photo-Fenton reaction system.
Collapse
Affiliation(s)
- Peize Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xuanyu Gu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Sha Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jingxiu Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, People's Republic of China
| | - Changbin Gong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Yu J, Zheng Z, Wang A, Humayun M, Attia YA. MoO 3 with the Synergistic Effect of Sulfur Doping and Oxygen Vacancies: The Influence of S Doping on the Structure, Morphology, and Optoelectronic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1189. [PMID: 39057866 PMCID: PMC11280073 DOI: 10.3390/nano14141189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Molybdenum trioxide (MoO3) is an attractive semiconductor. Thus, bandgap engineering toward photoelectronic applications is appealing yet not well studied. Here, we report the incorporation of sulfur atoms into MoO3, using sulfur powder as a source of sulfur, via a self-developed hydrothermal synthesis approach. The formation of Mo-S bonds in the MoO3 material with the synergistic effect of sulfur doping and oxygen vacancies (designated as S-MoO3-x) is confirmed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The bandgap is tuned from 2.68 eV to 2.57 eV upon sulfur doping, as confirmed by UV-VIS DRS spectra. Some MoS2 phase is identified with sulfur doping by referring to the photoluminescence (PL) spectra and electrochemical impedance spectroscopy (EIS), allowing significantly improved charge carrier separation and electron transfer efficiency. Therefore, the as-prepared S-MoO3-x delivers a sensitive photocurrent response and splendid cycling stability. This study on the synergistic effect of sulfur doping and oxygen vacancies provides key insights into the impact of doping strategies on MoO3 performance, paving new pathways for its optimization and development in relevant fields.
Collapse
Affiliation(s)
- Jian Yu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Zhaokang Zheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China; (J.Y.); (Z.Z.)
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Yasser A. Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
6
|
Xiao Y, Wang Z, Li M, Liu Q, Liu X, Wang Y. Efficient Charge Separation in Ag/PCN/UPDI Ternary Heterojunction for Optimized Photothermal-Photocatalytic Performance via Tandem Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306692. [PMID: 38773907 DOI: 10.1002/smll.202306692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Indexed: 05/24/2024]
Abstract
Charge separation driven by the internal electric field is a research hotspot in photocatalysis. However, it remains challenging to accurately control the electric field to continuously accelerate the charge transfer. Herein, a strategy of constructing a tandem electric field to continuously accelerate charge transfer in photocatalysts is proposed. The plasma electric field, interface electric field, and intramolecular electric field are integrated into the Ag/g-C3N4/urea perylene imide (Ag/PCN/UPDI) ternary heterojunction to achieve faster charge separation and longer carrier lifetime. The triple electric fields function as three accelerators on the charge transport path, promoting the separation of electron-hole pairs, accelerating charge transfer, enhancing light absorption, and increasing the concentration of energetic electrons on the catalyst. The H2 evolution rate of Ag/PCN/UPDI is 16.8 times higher than that of pristine PDI, while the degradation rate of oxytetracycline is increased by 4.5 times. This new strategy will provide a groundbreaking idea for the development of high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Mengyao Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650504, China
| |
Collapse
|
7
|
Li X, Wang H, Li S, Xu Y, Bian Z. Doping and defects in carbon nitride cause efficient in situ H 2O 2 synthesis to allow efficient photocatalytic sterilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172109. [PMID: 38556021 DOI: 10.1016/j.scitotenv.2024.172109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 μM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.
Collapse
Affiliation(s)
- Xinyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shunlin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ye Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Guo Y, Feng H, Zhang L, Wu Y, Lan C, Tang J, Wang J, Tang L. Insights into the Mechanism of Selective Removal of Heavy Metal Ions by the Pulsed/Direct Current Electrochemical Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5589-5597. [PMID: 38485130 DOI: 10.1021/acs.est.3c10553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Heavy metal pollution treatment in industrial wastewater is crucial for protecting biological and environmental safety. However, the highly efficient and selective removal of heavy metal ions from multiple cations in wastewater is a significant challenge. This work proposed a pulse electrochemical method with a low-/high-voltage periodic appearance to selectively recover heavy metal ions from complex wastewater. It exhibited a higher recovery efficiency for heavy metal ions (100% for Pb2+ and Cd2+, >98% for Mn2+) than other alkali and alkaline earth metal ions (Na+, Ca2+, and Mg2+ were kept below 3.6, 1.3, and 2.6%, respectively) in the multicomponent solution. The energy consumption was only 34-77% of that of the direct current electrodeposition method. The results of characterization and experiment unveil the mechanism that the low-/high-voltage periodic appearance can significantly suppress the water-splitting reaction and break the mass-transfer limitation between heavy metal ions and electrodes. In addition, the plant study demonstrates the feasibility of treated wastewater for agricultural use, further proving the high sustainability of the method. Therefore, it provides new insights into the selective recovery of heavy metals from industrial wastewater.
Collapse
Affiliation(s)
- Yuyao Guo
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lingyue Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangfeng Wu
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University & Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
9
|
Alamier WM, Ali SK, Qudsieh IY, Imran M, Almashnowi MYA, Ansari A, Ahmed S. Hydrothermally Synthesized Z-Scheme Nanocomposite of ZIF-9 Modified MXene for Photocatalytic Degradation of 4-Chlorophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6004-6015. [PMID: 38451499 DOI: 10.1021/acs.langmuir.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Isam Y Qudsieh
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Majed Y A Almashnowi
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
- The Institute for Lasers, Photonics, and Biophotonics/Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Zhang W, Li Z, Yu XF, Zhang K, Liu S, Du Y, Guo Q, Zhang L, Ding X, Tang H, Peng Y, Yang X. Photothermal Synergistic Catalysis over Defective Zn 3In 2S 6 for CO 2 Fixation. Inorg Chem 2024; 63:2954-2966. [PMID: 38288974 DOI: 10.1021/acs.inorgchem.3c03520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Carbon dioxide (CO2) cycloaddition not only produces highly valued cyclic carbonate but also utilizes CO2 as C1 resources with 100% atomic efficiency. However, traditional catalytic routes still suffer from inferior catalytic efficiency and harsh reaction conditions. Developing multienergy-field catalytic technology with expected efficiency offers great opportunity for satisfied yield under mild conditions. Herein, Zn3In2S6 with sulfur vacancies (Sv) was fabricated with the assistance of cetyltrimethylammonium bromide (CTAB), which is further employed for photothermally driven CO2 cycloaddition first. Photoluminescence spectroscopy and photoelectrochemical characterization demonstrated its superior separation kinetics of photoinduced carriers induced by defect engineering. The temperature-programmed desorption (TPD) technique indicated its excellent Lewis acidity-basicity characters. Due to the combination of above merits from photocatalysis and thermal catalysis, defective Zn3In2S6-Sv achieved a yield as high as 73.2% for cyclic carbonate at 80 °C under blue LED illumination within 2 h (apparent quantum yield of 0.468% under illumination of 380 nm monochromatic light at 36 mW·cm-2), which is 2.9, 2.0, and 6.9 times higher than that in dark conditions and those of pristine Zn3In2S6 and industrial representative tetrabutylammonium bromide (TBAB) thermal-catalysis process under the same conditions, respectively. The synergistic reaction path of photocatalysis and thermal catalysis was discriminated by theoretical calculation. This work provides new insights into the photothermal synergistic catalysis CO2 cycloaddition with defective ternary metal sulfides.
Collapse
Affiliation(s)
- Weilong Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, No. 32 Qingquan Road, Yantai 264005, P. R. China
| | - Kaisheng Zhang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Senmiao Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Yujie Du
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Qi Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Lixue Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Xin Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhua Peng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| | - Xiaolong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Bio-based Fibers and Ecological Textiles, Qingdao University, 308 NingXia Road, Qingdao 266071, P. R. China
| |
Collapse
|
11
|
Fu H, Deng Y, Cai Z, Pan Y, Yang L, Fujita T, Wang N, Wang Y, Wang X. Designing Z-scheme In 2O 3 @ZnIn 2S 4 core-shell heterojunctions for enhanced photocatalytic multi-pollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132820. [PMID: 37898084 DOI: 10.1016/j.jhazmat.2023.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
In water bodies, the coexistence of and interaction between multiple pollutants complicate remediation. In this study, the In2O3 @ZnIn2S4 Z-scheme heterojunction with a stratified core-shell structure was constructed and used to remove multiple pollutants (tetracycline hydrochloride and Cr(VI)). The large number of active sites and the mechanism of photogenerated charge separation ensured the substantially enhanced catalytic activity of this photocatalyst, making it superior to In2O3 nanospheres and pure ZnIn2S4. The optimised In2O3 @ZnIn2S4 nano-flowers (In2O3 @ZnIn2S4 NFs) realised 99.8% removal of tetracycline hydrochloride and 100% removal of Cr(VI) within 60 min under visible-light. The material's high stability was demonstrated by five experiment cycles. Effects of organics, inorganics, and pH about the photocatalytic performance of the optimised In2O3 @ZnIn2S4 NFs when tetracycline hydrochloride and Cr(VI) coexist were also explored. Finally, the intermediates and degradation pathways were analysed, and the possible photocatalytic mechanism was also investigated by performing density functional theory calculations.
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Yuxiang Deng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Zhenyu Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Yuehua Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Libo Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Nannan Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Youbin Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Xinpeng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China.
| |
Collapse
|
12
|
Hu S, Qin L, Yi H, Lai C, Yang Y, Li B, Fu Y, Zhang M, Zhou X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305579. [PMID: 37788902 DOI: 10.1002/smll.202305579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.
Collapse
Affiliation(s)
- Shuyuan Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
13
|
da Silva Júnior MG, Arzuza LCC, Sales HB, Farias RMDC, Neves GDA, Lira HDL, Menezes RR. A Brief Review of MoO 3 and MoO 3-Based Materials and Recent Technological Applications in Gas Sensors, Lithium-Ion Batteries, Adsorption, and Photocatalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7657. [PMID: 38138799 PMCID: PMC10745064 DOI: 10.3390/ma16247657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Molybdenum trioxide is an abundant natural, low-cost, and environmentally friendly material that has gained considerable attention from many researchers in a variety of high-impact applications. It is an attractive inorganic oxide that has been widely studied because of its layered structure, which results in intercalation ability through tetrahedral/octahedral holes and extension channels and leads to superior charge transfer. Shape-related properties such as high specific capacities, the presence of exposed active sites on the oxygen-rich structure, and its natural tendency to oxygen vacancy that leads to a high ionic conductivity are also attractive to technological applications. Due to its chemistry with multiple valence states, high thermal and chemical stability, high reduction potential, and electrochemical activity, many studies have focused on the development of molybdenum oxide-based systems in the last few years. Thus, this article aims to briefly review the latest advances in technological applications of MoO3 and MoO3-based materials in gas sensors, lithium-ion batteries, and water pollution treatment using adsorption and photocatalysis techniques, presenting the most relevant and new information on heterostructures, metal doping, and non-stoichiometric MoO3-x.
Collapse
Affiliation(s)
- Mário Gomes da Silva Júnior
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso 882, Campina Grande 58429-900, PB, Brazil; (L.C.C.A.); (H.B.S.); (R.M.d.C.F.); (G.d.A.N.); (H.d.L.L.)
| | | | | | | | | | | | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso 882, Campina Grande 58429-900, PB, Brazil; (L.C.C.A.); (H.B.S.); (R.M.d.C.F.); (G.d.A.N.); (H.d.L.L.)
| |
Collapse
|
14
|
Yang C, Yang J, Liu S, Zhao M, Duan X, Wu H, Liu L, Liu W, Li J, Ren S, Liu Q. Constructing C-O bridged CeO 2/g-C 3N 4 S-scheme heterojunction for methyl orange photodegradation:Experimental and theoretical calculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117608. [PMID: 36867902 DOI: 10.1016/j.jenvman.2023.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Owing to its feasibility, efficiency in light-harvesting and effectiveness in the interfacial charge transfer between two n-type semiconductors, constructing heterojunction photocatalysts have been identified as an effective way for enhancing the photocatalytic properties. In this research, a C-O bridged CeO2/g-C3N4 (cCN) Step-scheme (S-scheme) heterojunction photocatalyst was constructed successfully. Under visible light irradiation, the cCN heterojunction exhibited the photocatalytic degradation efficiency of methyl orange, which was about 4.5 and 1.5 times higher than that of pristine CeO2 and CN, respectively. The DFT calculations, XPS and FTIR analyses demonstrated the formation of C-O linkages. And the calculations of work functions revealed the electrons would flow from g-C3N4 to CeO2 due to the difference in Fermi levels, resulting in the production of internal electric fields. Benefiting from the C-O bond and internal electric field, the photo-induced holes in the valence band of g-C3N4 and the photo-induced electrons from conduction band of CeO2 would be recombined when exposed to visible light irradiation, while leaving the electrons with higher redox potential in the conduction band of g-C3N4. This collaboration accelerated the separation and transfer rate of photo-generated electron-hole pairs, which promoted the generation of superoxide radical (•O2-) and improved the photocatalytic activity.
Collapse
Affiliation(s)
- Chen Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Jian Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Shuangshuang Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Mingxue Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Xu Duan
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Hongli Wu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Lang Liu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 530006, China.
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Jiangling Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Shan Ren
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Chen X, Yao L, He J, Li J, Xu S, Li N, Zhu Y, Chen X, Zhu R. Enhanced degradation of tetracycline under natural sunlight through the synergistic effect of Ag 3PO 4/MIL-101(Fe) photocatalysis and Fenton catalysis: Mechanism, pathway, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131024. [PMID: 36821899 DOI: 10.1016/j.jhazmat.2023.131024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Here, we show that the adverse environmental and health effects of tetracycline (TC) can be efficiently reduced by encapsulating Ag3PO4 into MIL-101(Fe) to construct a Ag3PO4/MIL-101(Fe) heterojunction composite through advanced oxidation processes, such as Fenton catalysis, photocatalysis, and photo-Fenton catalysis. Notably, the reaction can be driven by natural sunlight and does not require any artificial energy source. Remarkably, the optimal degradation of TC can be achieved under different compositions of the composite system through photocatalysis and photo-Fenton catalysis. For photo-Fenton catalysis, the maximum degradation rate of TC (2.5730 min-1) is achieved when the mass ratio of MIL-101(Fe) to Ag3PO4 in the composite is 5:1, which is 31.65- and 3.12-fold of that in the Ag3PO4 + PDS + Sunlight and MIL-101(Fe) + PDS+ Sunlight catalyst systems, respectively. Moreover, the internal conversion of matrix during photocatalysis and Fenton catalysis processes inhibits the photocorrosion of Ag3PO4 and improves the reusability of the composite. Furthermore, it is found that both radical and non-radical species participate in the TC degradation. Besides, the degradation products and catalytic mechanism of Ag3PO4 and Ag3PO4/MIL-101(Fe) systems are explored. The toxicity evaluation results suggest that the intermediates produced during Ag3PO4/MIL-101(Fe) catalysis have a lower biotoxicity than those produced during Ag3PO4 catalysis. Overall, this work provides an effective strategy to inhibit the inherent photocorrosion of Ag3PO4 and establishes an efficient catalytic system for the treatment of organic-contaminated wastewater under natural sunlight conditions.
Collapse
Affiliation(s)
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Ning Li
- Foshan University, Foshan 528225, China.
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Chen
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
16
|
Lee YJ, Jeong YJ, Cho IS, Park SJ, Lee CG, Alvarez PJJ. Facile synthesis of N vacancy g-C 3N 4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131046. [PMID: 36821907 DOI: 10.1016/j.jhazmat.2023.131046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Photocatalysis offers opportunities to degrade recalcitrant organic pollutants without adding treatment chemicals. Nitrogen (N) vacancy is an effective point-defect engineering strategy to mitigate electron-hole recombination and facilitate hydroxyl radical (•OH) production via superoxide radical (O2•-) generation during photocatalytic application of graphitic carbon nitride (g-C3N4). Here, we report a novel strategy for fabrication of N-vacancy-rich g-C3N4 (NvrCN) via post-solvothermal treatment of Mg-doped g-C3N4. The addition of the Mg precursor during the polycondensation of urea created abundant amine sites in the g-C3N4 framework, which facilitates formation of N vacancies during post-solvothermal treatment. Elemental analysis and electron paramagnetic resonance spectra confirmed a higher abundance of N vacancies in the resultant NvrCN. Further optical and electronic analyses revealed the beneficial role of N vacancies in light-harvesting capacity, electron-hole separation, and charge transfer. N vacancies also provide specific reaction centers for O2 molecules, promoting oxygen reduction reaction (ORR). Therefore, •OH generation increased via enhanced formation of H2O2 under visible light irradiation, and NvrCN photocatalytically degraded oxytetracycline 4-fold faster with degradation rate constant of 1.85 × 10-2 min-1 (light intensity = 1.03 mW/cm2, catalyst concentration = 0.6 g/L, oxytetracycline concentration = 20 mg/L) than pristine g-C3N4. Overall, this study provides a facile method for synthesizing N-vacancy-rich g-C3N4 and elucidates the role of the defect structure in enhancing the photocatalytic activity of g-C3N4.
Collapse
Affiliation(s)
- Youn-Jun Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Yoo Jae Jeong
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - In Sun Cho
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
17
|
Guan SX, Xu T, Zhang JY, Luo YG, Zhai X, Zhang N, Fang YZ, Ke QF. Cu-MOFs based photocatalyst triggered antibacterial platform for wound healing: 2D/2D Schottky junction and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131531. [PMID: 37146334 DOI: 10.1016/j.jhazmat.2023.131531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Herein, we developed a multimodal antibacterial nanoplatform via synergism effect including knife-effect, photothermal, photocatalytic induced reactive oxygen species (ROS), and Cu2+ inherent attribute. Typically, 0.8-TC/Cu-NS possesses higher photothermal property with the higher photothermal conversion efficiency of 24% and the moderate temperature up to 97 °C. Meanwhile, 0.8-TC/Cu-NS exhibits the more active ROS, 1O2 and ·O2-. Hence, 0.8-TC/Cu-NS possesses best antibacterial properties against S. aureus and E. coli in vitro with efficiency of 99.94%/99.97% under near-infrared (NIR) light, respectively. In the therapeutic practical use for wound healing of Kunming mice, this system exhibits outstanding curing capacity and good biocompatibility. Based on the electron configuration measurement and density functional theory (DFT) simulation, it is confirmed that the electrons on CB of Cu-TCPP flow fleetingly to MXene trough the interface, with redistribution of charge and band upward bending over Cu-TCPP. As a result, the self-assembled 2D/2D interfacial Schottky junction have made great favor to accelerate photogenerated charges mobility, hamper charge recombination, and increases the photothermal/photocatalytic activity. This work gives us a hint to mostly design the multimodal synergistic nanoplatform under NIR light in biological applications without drug resistance.
Collapse
Affiliation(s)
- Shi-Xian Guan
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Tao Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jian-Yong Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - You-Guo Luo
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xingwu Zhai
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Yong-Zheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Shanghai Engineering Research Center of Photodetection Materials and Devices, Shanghai Institute of Technology, Shanghai 200235, PR China.
| | - Qin-Fei Ke
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
18
|
Wang J, Guan L, Yuan S, Zhang J, Zhao C, Hu X, Teng B, Wu Y, He Y. Greatly boosted photocatalytic N2-to-NH3 conversion by bismuth doping in CdMoO4: Band structure engineering and N2 adsorption modification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
19
|
Chen X, Xu Z, Chen J, Yao L, Xie W, He J, Li N, Li J, Xu S, Zhu Y, Chen X, Zhu R. Continuous surface Z-Scheme and Schottky heterojunction Au/La2Ti2O7/Ag3PO4 catalyst with boosted charge separation through dual channels for excellent photocatalysis: Highlight influence factors regulation and catalytic system applicability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
20
|
Composite of α-FeOOH and Mesoporous Carbon Derived from Indian Blackberry Seeds as Low-Cost and Recyclable Photocatalyst for Degradation of Ciprofloxacin. Catalysts 2023. [DOI: 10.3390/catal13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study aims to analyse the use of biowaste-derived carbon in enhancing the photocatalytic effect of Earth-abundant visible light active goethite (α−FeOOH). The biowaste material used in this case is seeds of the Indian blackberry fruit. The FeOOH/C composite has been synthesized using an assisted sonochemical technique. The photocatalysts have been characterized using powder x-ray diffraction, nitrogen adsorption isotherms and scanning electron microscopy technique. FTIR and Raman studies have been carried out to understand the structure bonding correlation. The band gap has been ascertained using Tauc plots. The adsorption and consequent photodegradation of CIP have been studied via UV-visible spectroscopy and the mechanism has been ascertained by using radical quenching techniques. The charge separation efficiency has been ascertained through photoluminescence (PL) studies and electrochemical impedance studies (EIS). The pivotal role played by photogenerated holes (h+) in the photocatalytic degradation of CIP has been highlighted. The low cost biowaste-derived carbon as a constituent of the FeOOH/C composite shows great promise as a supporting material for enhancing the photocatalytic properties of such semiconductor materials.
Collapse
|