1
|
Zheng X, Shang H, Liu Q, Tian L, Yue Y, Meng S, Chen J, Su L, Quan J, Zhang Y, Li X, Xu K, Shangguan X. Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101403. [PMID: 39754993 DOI: 10.1016/j.cbd.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/06/2025]
Abstract
Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N. lugens. Sequence analysis revealed an average amino acid identity of 45.64 %; however, catalytic and sugar-binding residues, along with UGT signature motifs, were highly conserved. Phylogenetic analysis showed that the 20 NlUGTs were clustered into three main groups. The motif numbers ranged from 5 to 10, with motifs 1 and 4 being found in the functional domains of all 20 NlUGT proteins. Tandem and segmental duplication analysis identified one tandem duplication pair (UGT386K7 and UGT386K8) and two pairs of collinearity genes (UGT362C6/UGT386J4 and UGT386C2/UGT386G5) that expanded through segmental duplication within the UGT gene family of N. lugens. Combining the transcriptome and real-time quantitative PCR data showed that gut, antennae, integument, and ovaries were the tissues enriched with NlUGT gene expression. Six NlUGTs were present mainly in the gut, suggesting their putative roles in detoxification. This research provides valuable information on the molecular and genetic basis of NlUGTs, establishing a solid foundation for subsequent functional investigations of UGTs in planthopper, as well as paving the way for identifying potential targets to manage N. lugens effectively.
Collapse
Affiliation(s)
- Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Hongfei Shang
- College of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Qifan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Luao Tian
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yuzhen Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Shiqing Meng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiahui Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Linlin Su
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiaxin Quan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China.
| |
Collapse
|
2
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Jia W, Liu H, Ma Y, Huang G, Liu Y, Zhao B, Xie D, Huang K, Wang R. Reproducibility in nontarget screening (NTS) of environmental emerging contaminants: Assessing different HLB SPE cartridges and instruments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168971. [PMID: 38042181 DOI: 10.1016/j.scitotenv.2023.168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Non-targeted screening (NTS) methods are integral in environmental research for detecting emerging contaminants. However, their efficacy can be influenced by variations in hydrophilic-lipophilic balance (HLB) solid phase extraction (SPE) cartridges and high-resolution mass spectrometry (HRMS) instruments across different laboratories. In this study, we scrutinized the influence of five HLB SPE cartridges (Nano, Weiqi, CNW, Waters, and J&K) and four LC-HRMS platforms (Agilent, Waters, Thermo, and AB SCIEX) on the identification of emerging environmental contaminants. Our results demonstrate that 87.6 % of the target compounds and over 59.6 % of the non-target features were consistently detected across all tested HLB cartridges, with an overall 71.2 % universally identified across the four LC-HRMS systems. Discrepancies in detection rates were primarily attributable to variations in retention time stability, mass stability of precursors and fragments, system cleanliness affecting fold change and p-values, and fragment response. These findings confirm the necessity of refining parameter criteria for NTS. Moreover, our study confirms the efficacy of the PyHRMS tool in analyzing and processing data from multiple instrumental platforms, reinforcing its utility for multi-platform NTS. Overall, our findings underscore the reliability and robustness of NTS methods in identifying potential water contaminants, while also highlighting factors that may influence these outcomes.
Collapse
Affiliation(s)
- Wenhao Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yini Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China
| | - Guolong Huang
- Zhejiang GenPure Eco-Tech Co., Ltd., Hangzhou 310020, Zhejiang, China
| | - Yaxiong Liu
- Guangdong Institute for Drug Control, Guangzhou 510663, Guangdong, China
| | - Bo Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Danping Xie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China
| | - Kaibo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou 570228, China.
| | - Rui Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Nanning 530028, China.
| |
Collapse
|
4
|
Gao J, Wu J, Chen S, Chen Y. Nitrogen removal from pharmaceutical wastewater using simultaneous nitrification-denitrification coupled with sulfur denitrification in full-scale system. BIORESOURCE TECHNOLOGY 2024; 393:130066. [PMID: 37984670 DOI: 10.1016/j.biortech.2023.130066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Fermentation pharmaceutical wastewater (FPW) containing excessive ammonium and low chemical oxygen demand (COD)/nitrogen ratio (C/N ratio) brings serious environmental risks. The stepwise nitrogen removal was achieved in a full-scale anaerobic/aerobic/anoxic treatment system with well-constructed consortia, that enables simultaneous partial nitrification-denitrification coupled with sulfur autotrophic denitrification (SPND-SAD) (∼99 % (NH4+-N) and ∼98 % (TN) removals) at the rate of 0.8-1.2 kg-N/m3/d. Inoculating simultaneous nitrification-denitrification (SND) consortia in O1 tank decreased the consumed ΔCOD and ΔCOD/ΔTN of A1 + O1 tank, resulting in the occurrence of short-cut SND at low C/N ratio. In SAD process (A2 tank), bio-generated polysulfides reacted with HS- to rearrange into shorter polysulfides, enhancing sulfur bioavailability and promoting synergistic SAD removal. PICRUSt2 functional prediction indicated that bioaugmentation increased genes related to Nitrogen/Sulfur/Carbohydrate/Xenobiotics metabolism. Key functional gene analysis highlighted the enrichment of nirS and soxB critical for SPND-SAD system. This work provides new insights into the application of bioaugmentation for FPW treatment.
Collapse
Affiliation(s)
- Jian Gao
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingyu Wu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Li J, Yang L, Yu S, Ding A, Zuo R, Yang J, Li X, Wang J. Environmental stressors altered the groundwater microbiome and nitrogen cycling: A focus on influencing mechanisms and pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167004. [PMID: 37704146 DOI: 10.1016/j.scitotenv.2023.167004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nitrogen cycling, as an important biogeochemical process in groundwater, strongly impacts the energy and matter flow of groundwater ecology. Phthalate esters (PAEs) were screened as key environmental stressors in the groundwater of Beijing, contributing to the alteration of microbial community structure and functions; thus, it could be deduced that these stressors might influence nitrogen cycling that is almost exclusively mediated by microorganisms. Identification of the influences of PAEs on groundwater nitrogen cycling and exploration of the potential influence mechanisms and pathways are vital but still challenging. This study explored the influence mechanisms and pathways of the environmental stressor PAE on nitrogen cycling in groundwater collected from a typical monitoring station in Beijing based on high-throughput sequencing and bioinformatics analysis combined with mediation analysis methods. The results suggested that among the 5 detected PAEs, dimethyl phthalate and diethyl phthalate significantly negatively impacted nitrogen cycling processes, especially nitrogen fixation and denitrification processes (p < 0.05), in groundwater. Their influences were fully or partially mediated by functional microorganisms, particularly assigned keystone genera (such as Dechloromonas, Aeromonas and Noviherbaspirillum), whose abundance was significantly inhibited by these PAEs via dysregulation of carbohydrate metabolism and activation of defense mechanisms. These findings confirmed that the influences of environmental stressors PAEs on nitrogen cycling in groundwater might be mediated by the "PAE stress-groundwater microbiome-nitrogen cycling alteration" pathway. This study may advance the understanding of the consequences of environmental stressors on groundwater ecology and support the ecological hazard assessment of groundwater stressors.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Aizhong Ding
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofei Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
6
|
Sha H, Liu Z, Sun Y, Wang Y, Wang X, Zheng J, Ma Y, He X. Leachate leakage enhances the microbial diversity and richness but decreases Proteobacteria and weakens stable microbial ecosystem in landfill groundwater. WATER RESEARCH 2023; 243:120321. [PMID: 37473508 DOI: 10.1016/j.watres.2023.120321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Sanitary landfill is the most prevalent and economic method for municipal solid waste disposal, and the resultant groundwater pollution has become an environmental problem due to leachate leakage. The pollution characteristics in groundwater near landfill sites have been extensively investigated, although the succession characteristics and driving mechanisms of microbial communities in leachate-contaminated groundwater and the sensitive microbial indicators for leachate leakage identification remain poorly studied. Herein, results showed that leachate leakage enhanced the microbial diversity and richness and transferred endemic bacteria from landfills into groundwater, producing an average decrease of 17.73% in the relative abundance of Proteobacteria. The key environmental factor driving the evolution of microbial communities in groundwater due to leachate pollution was organic matter, which can explain 16.13% of the changes in microbial community composition. The |βNTI| values of the bacterial communities in all six landfills were <2, and the assembly process of microbial communities was primarily dominated using stochastic processes. Leachate pollution changed the assembly mechanism, transforming the community assembly process from an undominated process to a dispersal limitation process. Leachate pollution reduced the efficiency and stability of microbial communities in groundwater, increasing the vulnerability of the stable microbial ecosystems in groundwater. Notably, microbial indicators are more sensitive to leachate leakage and could accurately identify landfills where leachate leakage occurred and other extraneous pollutants. The phylum Proteobacteria and mcrA could act as appropriate indicators for the identification of leachate leakage. These results provide a novel insight into the monitoring, identification of groundwater pollution and the scientific guidance for appropriate remediation strategies for leachate-contaminated groundwater.
Collapse
Affiliation(s)
- Haoqun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Zhenhai Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiange Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|