1
|
Yuan L, Zhang H, Yu H, Xu R, Ji C, Zhang W. Efficient capture of 99TcO 4-/ReO 4- via node and linker bifunctional anion exchange covalent organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137289. [PMID: 39837040 DOI: 10.1016/j.jhazmat.2025.137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
In nuclear wastewater treatment, ion-scavenging materials designed to trap 99TcO4- is urgently needed. However, strong acid/base, high radiation and high salt concentration of nuclear wastewater usually result in inadequate stability and adsorption capacity of the adsorbent. Herein, we report a new class of bifunctional anion-exchange olefin-linked COF (BPDC-MTMP) prepared via Knoevenagel condensation reactions, the first example exploring the synergistic integration of positively charged fragments at both nodes and linkers. Surprisingly, BPDC-MTMP exhibits a record ReO4- (a non-radioactive surrogate of 99TcO4-) adsorption capacity up to 1593.21 mg g-1, its outstanding adsorption capacity can be attributed to the synergistic enhancement of the positively charged fragments of the nodes and linkers leading to a significant increase in the positive charge density and the number of anion exchange sites. BPDC-MTMP's hydrophobicity is enhanced by the highly conjugated bulky alkyl skeleton, the affinity toward ReO4- and chemical stability are therefore significantly improved, ReO4- can be selectively and reversibly extracted even under strong acid/base and high salt concentration solutions. This study illustrates that the node and linker bifunctional anion exchange COF is of great potential for ReO4-/99TcO4- trapping, which provides a new method to design high-performance adsorbents for the treatment of nuclear wastewater.
Collapse
Affiliation(s)
- Ling Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Li Y, Wei J, Wang J, Wang Y, Yu P, Chen Y, Zhang Z. Covalent organic frameworks as superior adsorbents for the removal of toxic substances. Chem Soc Rev 2025; 54:2693-2725. [PMID: 39841538 DOI: 10.1039/d4cs00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, etc. The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed. The complex host-guest interactions mainly include electrostatic, π-π interactions, hydrogen bonding, hydrophobic interactions, and molecular sieving effects. In addition, the adsorption performance of various COF-based adsorbents will be compared, and strategies such as reasonable adjustment of pore size, introduction of functionalities, and preparation of composite materials can effectively improve the adsorption efficiency of toxins. Finally, we also point out the challenges and future development directions that COFs may face in the field of toxicant removal. It is expected that this review will provide valuable insights into the application of COF-based adsorbents in the removal of toxicants and the development of new materials.
Collapse
Affiliation(s)
- Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Peishuang Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yao Chen
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Li C, Florek J, Guggenberger P, Kleitz F. Gram-scale green synthesis of a highly stable cationic covalent organic framework for efficient and selective removal of ReO 4 -/ 99TcO 4. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 13:214-219. [PMID: 39554595 PMCID: PMC11566665 DOI: 10.1039/d4ta06442a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Covalent organic frameworks (COFs) have developed as efficient and selective adsorbents to mitigate 99TcO4 - contamination. However, the eco-friendly and scalable production of COF-based adsorbents for the removal of 99TcO4 - has not yet been reported. This study explores the potential of a cationic COF (TpDB-COF) synthesized via a green hydrothermal method, achieving gram-scale yields per batch, thereby addressing a significant limitation of existing COF production methods. The TpDB-COF demonstrates an exceptional stability in strongly acidic conditions (2 weeks in 3 M HNO3), as well as in various organic solvents, making it suitable for harsh nuclear waste environments. Adsorption experiments using ReO4 - as a surrogate for 99TcO4 - show rapid adsorption kinetics, reaching nearly 100% removal efficiency within 1 min (with initial concentration of 28 ppm at a solid-to-liquid ratio of 1 g L-1), a maximum adsorption capacity of 570 mg g-1 and excellent stability. Moreover, the COF maintains high selectivity for ReO4 - even in the presence of competing anions such as SO4 2- and NO3 -. These findings highlight that the hydrothermal synthesis is an effective method to synthesize COF adsorbents for efficient removal of 99TcO4 - and offers a sustainable approach for practical applications.
Collapse
Affiliation(s)
- Changxia Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University 211816 Nanjing China
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| | - Justyna Florek
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| | - Patrick Guggenberger
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna 1090 Vienna Austria
| |
Collapse
|
4
|
Sun J, Hou Z, Wang J, Yang P, Li S, Liu C, Shen C, Liu Z. A robust amphiphilic ionic covalent organic framework intercalated into functionalized graphene oxide hybrid membranes for ultrafast extraction uranium from wastewater. WATER RESEARCH 2024; 265:122320. [PMID: 39197392 DOI: 10.1016/j.watres.2024.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The efficient capture of uranium from wastewater is crucial for environmental remediation and the sustainable development of nuclear energy, yet it poses considerable challenges. In this study, amphiphilic ionic covalent organic framework intercalated into graphene oxide (GO) nanosheets functionalized with polyethyleneimine (PEI) were used to construct hybrid membranes with ultrafast uranium adsorption. These hybrid membranes achieved equilibrium in just 10 min and the adsorption capacity was as high as 358.8 mg g-1 at pH = 6. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) analyses revealed that the strong interaction between sulfonic acid groups and uranyl ions was the primary reason for the high adsorption capacity and selectivity. The extended transition state and natural orbitals for chemical valence (ETS-NOCV) analysis revealed that the interaction between the 7 s and 5f orbitals of uranyl and the 2p orbitals of S and O in the sulfonate was the primary reason for the strong interaction between the sulfonate and the uranyl ion. This research presents an effective method for the rapid extraction of uranium from wastewater.
Collapse
Affiliation(s)
- Jian Sun
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zewei Hou
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - JiaFu Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Peipei Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Songwei Li
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| |
Collapse
|
5
|
Jing XZ, Li HR, Di Z, Liu QX, Li CP. Scavenging Radionuclide by Shapeable Porous Materials. Chempluschem 2024; 89:e202400364. [PMID: 38978154 DOI: 10.1002/cplu.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.
Collapse
Affiliation(s)
- Xue-Zhuo Jing
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qing-Xiang Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
6
|
He M, Chen Y, Chen G, Li W, Zhang M, Zhang C, Zhang H, Long X, Tang K, Duan T, Zhu L. Efficient removal of perrhenate/pertechnetate by a pyridinium-based porous polymer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124442. [PMID: 38944180 DOI: 10.1016/j.envpol.2024.124442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The extraction of 99TcO4- from radioactive effluents is extremely crucial for the purposes of nuclear disposal and environmental remediation. Herein, utilizing a facile and low-cost synthesis method, we report a pyridinium-based cationic polymer network, CPP-Cl, with impressive adsorption performance and ultrafast adsorption kinetics towards ReO4-. The structure featuring highly density of charged pyridinium units was synthesized, making it an effective adsorbent for capturing ReO4-. The material showed fast ReO4- adsorption kinetics reaching adsorption equilibrium within 30 s, an excellent capture capability of 1069.7 mg/g, and exceptional separation efficiency of 94.3% for removing 1000 ppm ReO4-. Furthermore, it possessed excellent reusability in multiple sorption/desorption trials and good uptake capacity within a widely ranging pH values. It is noteworthy that the extraction efficiency of CPP-Cl for ReO4- from simulated nuclear waste can be up to 94.2%. The favorable performance of the material in multiple tests revealed that CPP-Cl has tremendous potential as a high-efficiency sorbent for capturing 99TcO4-/ReO4- in complex nuclear associated environmental systems.
Collapse
Affiliation(s)
- Miaomiao He
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuxuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Chao Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hao Zhang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xingyi Long
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
7
|
Zhao Y, Wang Y, Xue W, Cheng R, Zheng X, Zhu G, Hu D, Huang H, Hu C, Liu D. Unveiling the Role of Cationic Pyridine Sites in Covalent Triazine Framework for Boosting Zinc-Iodine Batteries Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403097. [PMID: 38753369 DOI: 10.1002/adma.202403097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Rechargeable Zinc-iodine batteries (ZIBs) are gaining attention as energy storage devices due to their high energy density, low-cost, and inherent safety. However, the poor cycling performance of these batteries always arises from the severe leakage and shuttle effect of polyiodides (I3 - and I5 -). Herein, a novel cationic pyridine-rich covalent triazine framework (CCTF-TPMB) is developed to capture and confine iodine (I2) species via strong electrostatic interaction, making it an attractive host for I2 in ZIBs. The as-fabricated ZIBs with I2 loaded CCTF-TPMB (I2@CCTF-TPMB) cathode achieve a large specific capacity of 243 mAh g-1 at 0.2 A g-1 and an exceptionally stable cyclic performance, retaining 93.9% of its capacity over 30 000 cycles at 5 A g-1. The excellent electrochemical performance of the ZIBs can be attributed to the pyridine-rich cationic sites of CCTF-TPMB, which effectively suppress the leakage and shuttle of polyiodides, while also accelerating the conversion reaction of I2 species. Combined in situ Raman and UV-vis analysis, along with theoretical calculations, clearly reveal the critical role played by pyridine-rich cationic sites in boosting the ZIBs performances. This work opens up a promising pathway for designing advanced I2 cathode materials toward next-generation ZIBs and beyond.
Collapse
Affiliation(s)
- Yuliang Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiyang Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Ruyi Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuan Zheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Gengcong Zhu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dayin Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Xing Z, Lai Z, Sun Q, Xiao C, Wang S, Wang X, Aguila-Ames B, Thallapally PK, Martin K, Ma S. Advanced Porous Materials as Designer Platforms for Sequestering Radionuclide Pertechnetate. CHEM & BIO ENGINEERING 2024; 1:199-222. [PMID: 39974206 PMCID: PMC11835185 DOI: 10.1021/cbe.3c00125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2025]
Abstract
Technetium-99 (99Tc), predominantly present as pertechnetate (99TcO4 -), is a challenging contaminant in nuclear waste from artificial nuclear fission. The selective removal of 99TcO4 - from nuclear waste and contaminated groundwater is complex due to (i) the acidic and intricate nature of high-level liquid wastes; (ii) the highly alkaline environment in low-activity level tank wastes, such as those at Hanford, and in high-level wastes at locations like Savannah River; and (iii) the potential for 99TcO4 - to leak into groundwater, risking severe water pollution due to its high mobility. This Review focuses on recent developments in advanced porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and their amorphous counterparts, porous organic polymers (POPs). These materials have demonstrated exceptional effectiveness in adsorbing 99TcO4 - and similar oxyanions. We comprehensively review the adsorption mechanisms of these anions with the adsorbents, employing macroscopic batch/column experiments, microscopic spectroscopic analyses, and theoretical calculations. In conclusion, we present our perspectives on potential future research directions, aiming to overcome current challenges and explore new opportunities in this area. Our goal is to encourage further research into the development of advanced porous materials for efficient 99TcO4 - management.
Collapse
Affiliation(s)
- Zhiwei Xing
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuozhi Lai
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Sun
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- Zhejiang
Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuao Wang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiangke Wang
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Briana Aguila-Ames
- New
College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34343, United States
| | - Praveen K. Thallapally
- Physical
and Computational Science Directorate, Pacific
Northwest National Laboratory Richland, Richland, Washington 99352, United States
| | - Kyle Martin
- Department
of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| | - Shengqian Ma
- Department
of Chemistry, University of North Texas, 1508 West Mulberry Street, Denton, Texas 76201, United States
| |
Collapse
|
9
|
Wang B, Li J, Huang H, Liang B, Zhang Y, Chen L, Tan K, Chai Z, Wang S, Wright JT, Meulenberg RW, Ma S. Creation of Cationic Polymeric Nanotrap Featuring High Anion Density and Exceptional Alkaline Stability for Highly Efficient Pertechnetate Removal from Nuclear Waste Streams. ACS CENTRAL SCIENCE 2024; 10:426-438. [PMID: 38435531 PMCID: PMC10906250 DOI: 10.1021/acscentsci.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
There is an urgent need for highly efficient sorbents capable of selectively removing 99TcO4- from concentrated alkaline nuclear wastes, which has long been a significant challenge. In this study, we present the design and synthesis of a high-performance adsorbent, CPN-3 (CPN denotes cationic polymeric nanotrap), which achieves excellent 99TcO4- capture under strong alkaline conditions by incorporating branched alkyl chains on the N3 position of imidazolium units and optimizing the framework anion density within the pores of a cationic polymeric nanotrap. CPN-3 features exceptional stability in harsh alkaline and radioactive environments as well as exhibits fast kinetics, high adsorption capacity, and outstanding selectivity with full reusability and great potential for the cost-effective removal of 99TcO4-/ReO4- from contaminated water. Notably, CPN-3 marks a record-high adsorption capacity of 1052 mg/g for ReO4- after treatment with 1 M NaOH aqueous solutions for 24 h and demonstrates a rapid removal rate for 99TcO4- from simulated Hanford and Savannah River Site waste streams. The mechanisms for the superior alkaline stability and 99TcO4- capture performances of CPN-3 are investigated through combined experimental and computational studies. This work suggests an alternative perspective for designing functional materials to address nuclear waste management.
Collapse
Affiliation(s)
- Bin Wang
- Department
of Chemistry, University of North Texas 1508W Mulberry St, Denton, Texas 76201, United States
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Li
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hongliang Huang
- State
key laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bin Liang
- Department
of Chemistry, University of North Texas 1508W Mulberry St, Denton, Texas 76201, United States
| | - Yin Zhang
- Department
of Chemistry, University of North Texas 1508W Mulberry St, Denton, Texas 76201, United States
| | - Long Chen
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kui Tan
- Department
of Chemistry, University of North Texas 1508W Mulberry St, Denton, Texas 76201, United States
| | - Zhifang Chai
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Joshua T. Wright
- Department
of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Robert W. Meulenberg
- Department
of Physics and Astronomy and Frontier Institute for Research in Sensor
Technologies, University of Maine, Orono, Maine 04469, United States
| | - Shengqian Ma
- Department
of Chemistry, University of North Texas 1508W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
10
|
Wei J, Shao X, Guo J, Zheng Y, Wang Y, Zhang Z, Chen Y, Li Y. Rapid and selective removal of aristolochic acid I in natural products by vinylene-linked iCOF resins. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132140. [PMID: 37734311 DOI: 10.1016/j.jhazmat.2023.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023]
Abstract
Rapid, efficient, and selective removal of toxicants such as aristolochic acid I (AAI) from complex natural product systems is of great significance for the safe use of herbal medicines or medicine-food plants. Addressing this challenge, we develop a high-performance separation approach based on ionic covalent organic frameworks (iCOFs) to separate and remove AAI. Two vinylene-linked iCOFs (NKCOF-46-Br- and NKCOF-55-Br-) with high crystallinity are fabricated in a green and scalable fashion via a melt polymerization synthesis method. The resulting materials exhibit a uniform morphology, high stability, fast equilibrium time, and superior affinity and selectivity for AAI. Compared to conventional separation media, NKCOF-46-Br- and NKCOF-55-Br- achieve the record high adsorption capacities of 246.0 mg g-1 and 178.4 mg g-1, respectively. Various investigations reveal that the positively charged framework and favorable pore microenvironment of iCOFs contribute to their high selectivity and adsorption efficiency. Moreover, the iCOFs exhibit excellent biocompatibility by in vivo toxicity assays. This study paves a new avenue for the rapid, selective and efficient removal of toxicants from complex natural systems.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanxue Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Xu W, Wang X, Li Y, Cui WR. Ultra-stable 3D pyridinium salt-based polymeric network nanotrap for selective 99TcO 4-/ReO 4- capture via hydrophobic and steric engineering. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131549. [PMID: 37163896 DOI: 10.1016/j.jhazmat.2023.131549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Selective capture of radioactive 99TcO4- from highly alkaline nuclear waste is highly desirable for environmental remediation and waste disposal. However, the combined features of adsorbents with excellent chemical stability and high capture selectivity for 99TcO4- have not yet been achieved. Herein, we report an ultra-stable 3D pyridinium salt-based polymeric network (TMP-TBPM) nanotrap with remarkable radiation, acid and base stability for selective capture of ReO4- via hydrophobic engineering and steric hindrance, a non-radioactive surrogate of 99TcO4-. The batch capture experiments show that TMP-TBPM has high capture capacity (918.7 mg g-1) and fast sorption kinetics (94.3 % removal in 2 min), which can be attributed to the high density of pyridinium salt-based units on the highly accessible pore channels of 3D interconnected low-density skeleton. In addition, the introduction of abundant alkyl and tetraphenylmethane units into the 3D framework not only greatly enhanced the hydrophobicity and stability of TMP-TBPM, but also significantly improved the affinity toward 99TcO4-/ReO4-, enabling reversible and selective capture of 99TcO4-/ReO4- even under highly alkaline conditions. This study exhibits the great potential of 3D pyridinium salt-based polymeric network nanotrap for 99TcO4-/ReO4- capture from highly alkaline nuclear waste, providing a new strategy to construct high-performance cationic polymeric sorbents for radioactive wastewater treatment.
Collapse
Affiliation(s)
- Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiu Wang
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
12
|
Cui WR, Xu W, Qiu WB. Constructing an ultrastable imidazole covalent organic framework for concurrent uranium detection and recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114639. [PMID: 36774795 DOI: 10.1016/j.ecoenv.2023.114639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Uranium is one of the most important strategic resources for the development of the nuclear industry, but its unintended release has created potential environmental and health risks. It is highly desired to explore new methods that enable concurrent uranium monitoring and recovery for environmental protection and sustainable development of the nuclear industry. Here, for the first time, an imidazole fluorescent covalent organic framework (named PyTT-Tp) with ultrastable skeleton and open nanopore channel is synthesized by condensing ammonium acetate, 1,3,5-triformylphloroglucinol and pyrene-4,5,9,10-tetrone. By precisely tailoring complexing ligands, PyTT-Tp shows an excellent uranium recovery capacity of 941.27 mg g-1 and reached equilibrium within 60 min, which can be attributed to dense selective uranium binding sites on the highly accessible open skeleton. In addition, due to the signal amplification of the pyrene-imidazole skeleton, it has an ultra-low detection limit of 4.92 nM UO22+ and an ultra-fast response time (2 s) suitable for on-site monitoring the uranium content of the extracted water. By modulating target complexing ligands, this approach can be extended to the monitoring and recovery of other strategic nuclides.
Collapse
Affiliation(s)
- Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Bin Qiu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|