1
|
Su Q, Yang S, Shang S, Liu S, Jiao D, Yan Y, Song X, Chu K, Zhao J. Theory-Guide Design of Integrative Catalytic Pairs for Urea Synthesis from Nitrate and Carbon Dioxide. ACS NANO 2025; 19:18492-18501. [PMID: 40337798 DOI: 10.1021/acsnano.5c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Electrochemical coreduction of carbon dioxide and nitrate offers a sustainable pathway to synthesize value-added urea from greenhouse gas and nitrogen-containing waste; however, challenges remain in designing efficient catalysts. Based on the concept of "integrative catalytic pairs (ICPs)", a catalyst for urea synthesis is designed by introducing heteroatoms (B and C) into M-N-C, where a single transition metal is dispersed on N-doped carbon material. Using a two-step theoretical screening strategy, Ni-N3B is identified as a promising catalyst for urea synthesis, with a low limiting potential (-0.43 V) and a small kinetic barrier for C-N coupling (0.74 eV) due to the electronic regulation effects and the synergy of Ni and B function for enhancing NO3- activation and facilitating C-N coupling between gaseous CO2 and *NH intermediate. Under the guidance of these theoretical results, our further experimental validation demonstrates that the synthesized Ni-N3B catalyst achieves a Faradaic efficiency of 51.92% and a urea yield rate of 32.30 mmol h-1 g-1 at -0.6 V vs RHE. Our work not only identifies an efficient urea synthesis catalyst without relying on trial-and-error methods but also inspires further exploration of ICPs-based catalysts in electrocatalysis.
Collapse
Affiliation(s)
- Qiwen Su
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Shucheng Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shiyao Shang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yuwei Yan
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Xueshi Song
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
2
|
Li Y, Bai Y, Wang Y, Lu S, Fang L. Precise structural regulation of copper-based electrocatalysts for sustainable nitrate reduction to ammonia. ENVIRONMENTAL RESEARCH 2025; 266:120422. [PMID: 39581256 DOI: 10.1016/j.envres.2024.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The electrocatalytic reduction of nitrate to ammonia (NRA) technology not only achieves the effective removal of nitrates in the environment but also produces value-added products-NH3. In recent years, copper-based materials have shown tremendous application prospects in this field due to their excellent conductivity, moderate cost, and their proximity of d orbital energy levels to the LUMO π∗ molecular orbitals of nitrate. This review starts with copper-based catalysts to elucidate the reaction mechanisms of NRA and its influencing factors, while summarizing and analyzing the principles and pros and cons of various modification strategies. Then, we will explore the impact of different modification strategies on improving NRA performance and the underlying theoretical mechanisms. Finally, this review proposes the current challenges and prospects of copper-based materials, aiming to provide a reference for the further development and industrial application of copper-based catalysts.
Collapse
Affiliation(s)
- Yaxuan Li
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Yuanjuan Bai
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yanwei Wang
- Xuzhou College of Industrial Technology, NO. 1 Xiangwang Road, Gulou District, Xuzhou, 221140, Jiangsu Province, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China.
| |
Collapse
|
3
|
Zhou X, Tamtaji M, Zhou W, Goddard WA, Chen G. Nonprecious Triple-Atom Catalysts with Ultrahigh Activity for Electrochemical Reduction of Nitrate to Ammonia: A DFT Screening. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4854-4864. [PMID: 39791978 PMCID: PMC11803552 DOI: 10.1021/acsami.4c17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Electrochemical nitrate reduction to ammonia (NO3RR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC). We found five promising candidates possessing not only thermodynamic and electrochemical stability, but also high activity and selectivity for ammonia production. Among them, non-noble homonuclear Ni3@NC TAC show high activity with low theoretical limiting potential of -0.31 VRHE. Surprisingly, bimetallic Co2Ni@NC, Co2Cu@NC, and Fe2Ni@NC TACs show ultrahigh activity with theoretical limiting potentials of 0.00 VRHE, without a potential determining step in the whole reaction pathways, representing the best theoretical activity been reported up to date. These promising candidates are facilitated by circumventing the limit of scaling relationships, a well-known obstacle for single-atom catalysts. This study indicates that designing suitable TACs can be a promising strategy for efficiently electro-catalyzing NO3RR and breaking the limit of the scaling relationship.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Mohsen Tamtaji
- Hong
Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong
SAR 999077, China
| | - Weijun Zhou
- QuantumFabless
Limited, Pak Shek Kok, Hong Kong SAR 999077, China
| | - William A. Goddard
- Materials
and Process Simulation Center, MC 139-74, California Institute of Technology, Pasadena, California 91125, United States
| | - GuanHua Chen
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Hong
Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong
SAR 999077, China
| |
Collapse
|
4
|
Ye C, Guo Z, Zhou Y, Shen Y. Nickel-based dual single atom electrocatalysts for the nitrate reduction reaction. J Colloid Interface Sci 2025; 677:933-941. [PMID: 39178672 DOI: 10.1016/j.jcis.2024.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Electrochemical nitrate (NO3-) reduction reaction (NO3-RR) to ammonium (NH4+) or nitrogen (N2) provides a green route for nitrate remediation. However, nitrite generation and hydrogen evolution reactions hinder the feasibility of the process. Herein, dual single atom catalysts were rationally designed by introducing Ag/Bi/Mo atoms to atomically dispersed NiNC moieties supported by nitrogen-doped carbon nanosheet (NCNS) for the NO3-RR. Ni single atoms loaded on NCNS (Ni/NCNS) tend to reduce NO3- to valuable NH4+ with a high selectivity of 77.8 %. In contrast, the main product of NO3-RR catalyzing by NiAg/NCNS, NiBi/NCNS, and NiMo/NCNS was changed to N2, giving rise to N2 selectivity of 48.4, 47.1 and 47.5 %, respectively. Encouragingly, Ni/NCNS, NiBi/NCNS, and NiAg/NCNS showed excellent durability in acidic electrolytes, leading to nitrate conversion rates of 70.3, 91.1, and 93.2 % after a 10-h reaction. Simulated wastewater experiments showed that NiAg/NCNS could remove NO3- up to 97.8 % at -0.62 V after 9-h electrolysis. This work afforded a new strategy to regulate the reaction pathway and improve the conversion efficiency of the NO3-RR via engineering the dual atomic sites of the catalysts.
Collapse
Affiliation(s)
- Cuizhu Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Ziyi Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongfang Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
5
|
Luo W, Liu J, Hu Y, Yan Q. Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review. NANOSCALE 2024; 16:20463-20483. [PMID: 39435616 DOI: 10.1039/d4nr02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ammonia and urea represent two important chemicals that have contributed to the rapid development of humanity. However, their industrial production requires harsh conditions, consuming excessive energy and resulting in significant greenhouse gas emission. Therefore, there is growing interest in the electrocatalytic synthesis of ammonia and urea as it can be carried out under ambient conditions. Recently, atomic catalysts (ACs) have gained increased attention for their superior catalytic properties, being able to outperform their micro and nano counterparts. This review examines the advantages and disadvantages of ACs and summarises the advancement of ACs in the electrocatalytic synthesis of ammonia and urea. The focus is on two types of AC - single-atom catalysts (SACs) and diatom catalysts (DACs). SACs offer various advantages, including the 100% atom utilization that allows for low material mass loading, suppression of competitive reactions such as hydrogen evolution reaction (HER), and alternative reaction pathways allowing for efficient synthesis of ammonia and urea. DACs inherit these advantages, possessing further benefits of synergistic effects between the two catalytic centers at close proximity, particularly matching the NN bond for N2 reduction and boosting C-N coupling for urea synthesis. DACs also possess the ability to break the linear scaling relation of adsorption energy of reactants and intermediates, allowing for tuning of intermediate adsorption energies. Finally, possible future research directions using ACs are proposed.
Collapse
Affiliation(s)
- Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
6
|
Zhou B, Tong Y, Yao Y, Zhang W, Zhan G, Zheng Q, Hou W, Gu XK, Zhang L. Reversed I 1Cu 4 single-atom sites for superior neutral ammonia electrosynthesis with nitrate. Proc Natl Acad Sci U S A 2024; 121:e2405236121. [PMID: 39226362 PMCID: PMC11406288 DOI: 10.1073/pnas.2405236121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, People’s Republic of China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan430072, People’s Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, People’s Republic of China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
7
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
8
|
Ahmed M, Wang C, Zhao Y, Sathish CI, Lei Z, Qiao L, Sun C, Wang S, Kennedy JV, Vinu A, Yi J. Bridging Together Theoretical and Experimental Perspectives in Single-Atom Alloys for Electrochemical Ammonia Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2308084. [PMID: 38243883 DOI: 10.1002/smll.202308084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Indexed: 01/22/2024]
Abstract
Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.
Collapse
Affiliation(s)
- MuhammadIbrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cheng Wang
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Yong Zhao
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chenghua Sun
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John V Kennedy
- National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt, 5010, New Zealand
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
9
|
Luo F, Guo L. Bimetallic synergistic catalysts based on two-dimensional carbon-rich conjugated frameworks for nitrate electrocatalytic reduction to ammonia: catalyst screening and mechanism insights. NANOTECHNOLOGY 2024; 35:125201. [PMID: 38100833 DOI: 10.1088/1361-6528/ad1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The discovery of the 'two birds, one stone' electrochemical nitrate reduction reaction (NO3RR) allows for the removal of harmful NO3-pollutants as well as the production of economically beneficial ammonia (NH3). However, current understanding of the catalytic mechanism of NO3RR is not enough, and this research is still challenging. To determine the mechanism needed to create efficient electrocatalysts, we thoroughly examined the catalytic activity of molybdenum-based diatomic catalysts (DACs) anchored on two-dimensional carbon-rich conjugated frameworks (2D CCFs) for NO3RR. Among the 23 candidate materials, after a four-step screening method and detailed mechanism studies, we discovered that NO3RR can efficiently generate NH3by following the N-end pathway on the MoTi-Pc, MoMn-Pc, and MoNb-Pc, with limiting potential of -0.33 V, -0.13 V, and -0.38 V, respectively. The activity of NO3RR can be attributed to the synergistic effect of the TM1-TM2dimer d orbital coupling to the anti-bonding orbital of NO3-. Additionally, high hybridization between the Mo-4d, TM-3d(4d), and NO3--2p orbitals on the MoTMs-Pc DACs can speed up the flow of electrons from the Mo-TM dual-site to NO3-. The research presented here paves the way for the reasonable design of effective NO3RR catalysts and offers a theoretical basis for experimental research.
Collapse
Affiliation(s)
- FengLing Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| | - Ling Guo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| |
Collapse
|