1
|
Zhang N, Li Y, Liu M, Hu M, Wang H, Ma W, Lu M. Facile synthesis of fluorine-functionalized long-chain metal-organic frameworks for highly efficient enrichment and sensitive detection of bisphenols in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138382. [PMID: 40280063 DOI: 10.1016/j.jhazmat.2025.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The exceptional stability of long-chain metal-organic framework materials (MOFs) is crucial for preserving their adsorption capabilities and practical applications. Herein, a well-defined material (50.0 %4F-BDC@UiO-67) with enhanced stability and pollutant adsorption was successfully synthesized through a straightforward one-step method, utilizing Zr4+ as the metal ion and employing 4,4'-biphenyldicarboxylic acid, which contains two benzene rings, alongside tetrafluoroterephthalic acid (4F-BDC), which contains one benzene ring, as dual ligands. The 50.0 %4F-BDC@UiO-67 material was utilized for the enrichment of harmful bisphenol pollutants (BPs) from the environment. Experimental results demonstrated that the synthesized 50.0 %4F-BDC@UiO-67 sorbent exhibited significantly improved adsorptive capacity, with its enrichment performance for BPs being 1.5-6.3 times greater than that of pristine UiO-67. The interactions between the material and BPs were explored using density functional theory calculations and experimental characterization. Findings indicated that the incorporation of fluorine enhanced the π-π and coordination interactions between 50.0 %4F-BDC@UiO-67 and BPs, while also introducing additional hydrogen bonding interactions. This outcome offers insights for the future design of materials with superior enrichment capabilities. Leveraging multiple synergistic forces, and in conjunction with high-performance liquid chromatography-diode array detection, the developed method exhibited a broad linear range (0.1-200 ng mL-1), excellent correlation coefficients (0.9992-0.9996), and low detection limits (0.1-0.5 ng mL-1) for BPs. Satisfactory recoveries were achieved for actual water samples (82.9-105.9 %). This work presents a strategy for enhancing the stability and adsorption performance of long-chain MOFs.
Collapse
Affiliation(s)
- Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Yingying Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengyuan Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miaojia Hu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Huifeng Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wende Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhou J, Hu X, Luo Z, Li X, Zhang WX, Deng Z. Nanocellulose encapsulated nZVI@UiO-66-NH 2 aerogel for high-efficiency p-chloronitrobenzene removal with selective reduction. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136520. [PMID: 39550834 DOI: 10.1016/j.jhazmat.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
A poriferous nZVI aerogel (nZVI@UiO-66-NH2/TCNF) was elaborately constructed by in-situ deposition of nZVI on UiO-66-NH2 and coupling with a bio-based TEMPO oxidized cellulose nanofiber (TCNF) substrate, followed by freeze-drying process for p-chloronitrobenzene (p-CNB) degradation. With degradation efficiency of above 85 % within 3 h under a wide pH range of 3-9, the nZVI@UiO-66-NH2/TCNF aerogel presented better p-CNB removal performance than other developed aerogels. Extended to 24 h, superior p-CNB removal performance (99.83 %) and 4-chloroaniline (p-CAN) selectivity (98.84 %) were successfully achieved. This could be attributed to 1) the facilitated mass transfer via concentration-gradient driving force with buffering and drag-reducing hydrated shear layer from porous channels of hydrophilic TCNF; 2) the enhanced adhesion of p-CNB onto UiO-66-NH2 and accelerated electron transfer by Fe-O-Zr bonds, synergistically improving the nitro- reduction of p-CNB using nZVI. This work pioneered a unique paradigm, providing nZVI with both solid bio-based moldability and highly-selective removal for the treatment of chloronitrobenzene containing wastewater.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolei Hu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengkun Luo
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaodong Li
- China Shipping Environment Technology (Shanghai) Co., Ltd, Shanghai Ship and Shipping Research Institute, 600 Minsheng Road, Shanghai 200135, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China; China Shipping Environment Technology (Shanghai) Co., Ltd, Shanghai Ship and Shipping Research Institute, 600 Minsheng Road, Shanghai 200135, China.
| |
Collapse
|
3
|
Zheng C, Wu Q, Sun K, Xu B, Sun Y, Zheng H. Insight into the impact of environmental factors on heavy metal adsorption by sodium alginate hydrogel: Inspiration on applicable scenarios. ENVIRONMENTAL RESEARCH 2024; 262:119878. [PMID: 39222734 DOI: 10.1016/j.envres.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH). The result showed that high concentration of organics (above 10 mg L-1) had a negative influence on heavy metal removal (decreased by 9.45 % at least), while inorganic ion, turbidity and antibiotics at relatively low concentrations exhibited a negligible even promoting effect (increased by 9.8 % with the presence of 5 mg L-1 Nor). Based on above results and corresponding mechanism analyses, the possible applicable and unsuitable scenarios of SAH can be predicted. SAH could be a great candidate for treating heavy metal-polluted water such as river and lake water, while it is not a good option for electroplating or livestock wastewater which contains high concentration of organic matters. Besides, the operating conditions including pH (5.0 for Cu(II), 6.0 for Ni(II)), contact time (24 h), temperature (298 K) et al. were also determined. Overall, this work provides theoretical guidance and operational strategies for promoting the practical application of SA adsorbent in water treatment.
Collapse
Affiliation(s)
- Chaofan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Kuiyuan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Huaili Zheng
- Chongqing Engineering Research Center of Water Treatment Coagulant, Chongqing, 400045, China
| |
Collapse
|
4
|
Barzegar B, Habibi R, Pourkhalil L, Aghdasinia H. Preparation of pyrolytic coke/uio-66 composite and its effectiveness for removing mono-ethylene glycol (MEG) from aqueous environments. CHEMOSPHERE 2024; 365:143321. [PMID: 39299465 DOI: 10.1016/j.chemosphere.2024.143321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
In the present study, the potential of pyrolytic coke (PC) and PC modified with UiO-66 nanoparticles as adsorbents for removing mono-ethylene glycol (MEG) from aqueous solutions was studied. Different experimental techniques were used to investigate the properties of adsorbents. The modification of the PC surface (6.91 m2/g) with UiO-66 significantly enhanced the specific surface area of the PC/UiO-66 composites, increasing it to 379.31 m2/g. Maximum MEG adsorption using PC (84.21%) and PC/UiO-66 (96.75%) was recorded at pH equal to 5 and 7, MEG quantity of 100 mg/L, temperature of 25 °C, adsorbent dosage of 1 g/L, and treatment time of 120 min, respectively. The Langmuir isotherm adsorption capacities for MEG removal using PC and PC/UiO-66 were determined to be 265 mg/g and 291 mg/g, respectively. The KF and AT values for the MEG adsorption were obtained at 128.1 mg/g (L/mg)1/n and 11.05 L/g, indicating the more pronounced affinity of the PC/UiO-66 towards MEG than the PC sample. The enthalpy, entropy, and Gibbs free energy were determined to be negative; thus, the MEG adsorption was exothermic and spontaneous in the range of 25-50 °C. The results demonstrated that the experimental data adheres to a pseudo-first-order kinetic. The adsorbents were recycled up to five stages, and the results showed that after five cycles, no significant decrease in the adsorption efficiency occurred, making them suitable for repeated utilization in the adsorption process.
Collapse
Affiliation(s)
- Behrad Barzegar
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran; Laboratory of Advanced Water and Wastewater, Central Laboratory of University of Tabriz, 51666- 16471, Tabriz, Iran.
| | - Rezvan Habibi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Leila Pourkhalil
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
5
|
Malhotra M, Kaur B, Soni V, Patial S, Sharma K, Kumar R, Singh P, Thakur S, Pham PV, Ahamad T, Le QV, Nguyen VH, Raizada P. Fe-based MOFs as promising adsorbents and photocatalysts for re-use water contained arsenic: Strategies and challenges. CHEMOSPHERE 2024; 357:141786. [PMID: 38537716 DOI: 10.1016/j.chemosphere.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
Arsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water. Fe-based MOFs have attained special attention due to their low toxicity, high water stability, better physical and chemical properties, and high abundance of iron. The arsenic species removal by Fe-MOF follows the adsorption and oxidation mechanism where As (III) converts into As (V). Moreover, the adsorption mechanism is facilitated by electrostatic interactions, H-bonding, acid-base interaction, hydrophobic interactions, van der Waals forces, π-π stacking interactions, and coordinative bindings responsible for Fe-O-As bond generation. This review thoroughly recapitulates and analyses recent advancements in the facile synthesis and potential application of Fe-based MOF adsorbents for the elimination of As ions. The most commonly employed hydro/solvothermal, ultrasonic, microwave-assisted, mechanochemical, and electrochemical synthesis for Fe-MOF has been discussed along with their adsorptive and oxidative mechanisms involved in arsenic removal. The effects of factors like pH and coexisting ions have also been discussed. Lastly, the article also proposed the prospects for developing the application of Fe-based MOF in treating As-contaminated water.
Collapse
Affiliation(s)
- Monika Malhotra
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Balvinder Kaur
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Kusum Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Phuong V Pham
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
6
|
Li W, Cheng C, Gao G, Xu H, Huang W, Qu Z, Yan N. Trace SO 2 capture within the engineered pore space using a highly stable SnF 62--pillared MOF. MATERIALS HORIZONS 2024; 11:1889-1898. [PMID: 38372122 DOI: 10.1039/d3mh02222f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Developing reliable solid sorbents for efficient capture and removal of trace sulfur dioxide (SO2) under ambient conditions is critical for industrial desulfurization operations, but poses a great challenge. Herein, we focus on SNFSIX-Cu-TPA, a highly stable fluorinated MOF that utilizes SnF62- as pillars, for effectively capturing SO2 at extremely low pressures. The exceptional affinity of SNFSIX-Cu-TPA towards SO2 over CO2 and N2 was demonstrated through single-component isotherms and corroborated by computational simulations. At 298 K and 0.002 bar, this material displays a remarkable gas uptake of 2.22 mmol g-1. Among various anion fluorinated MOFs, SNFSIX-Cu-TPA shows the highest SO2/MF62- of 1.39 mmol mmol-1 and exhibits a low Qst of 58.81 kJ mol-1. Additionally, SNFSIX-Cu-TPA displays excellent potential for SO2/CO2 separation, as evidenced by its ideal adsorbed solution theory (IAST) selectivity of 148 at a molar fraction of SO2 of 0.01. Dynamic breakthrough curves were obtained to reveal the effective removal of trace SO2 from simulated flue gas (SO2/CO2/N2; v/v/v 0.2/10/89.8) with a high dynamic capacity of up to 1.52 mmol g-1. Furthermore, in situ TGA demonstrated the efficient and reversible capture of 500 ppm SO2 over 20 adsorption-desorption tests. This durable material presents a rare combination of exceptional SO2 capturing performance, good adsorption selectivity, and mild regeneration, thus making it a good candidate for a realistic desulfurization process.
Collapse
Affiliation(s)
- Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Can Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
8
|
Zhang Z, Han W, Qing J, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133189. [PMID: 38071772 DOI: 10.1016/j.jhazmat.2023.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.
Collapse
Affiliation(s)
- Zelin Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wei Han
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Jiang Qing
- Ningbo HEIGER Electrics Co., Ltd, Ningbo 315300, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
9
|
Deng S, Liu J, Han D, Yang X, Liu H, Zhang C, Blecker C. Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132898. [PMID: 37939561 DOI: 10.1016/j.jhazmat.2023.132898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel ratiometric fluorescent nanoprobe (Rh6G@UIO-66-NH2) was fabricated for efficient nitrite (NO2-) detection in the present study. When NO2- was introduced, it interacted with the amino groups on the surface of Rh6G@UIO-66-NH2, forming diazonium salts that led to the quenching of blue fluorescence. With this strategy, a good linear relationship between NO2- concentration and the fluorescent intensity ratio of the nanoprobe in the range of 1-100 μM was established, with a detection limit of 0.021 μM. This dual-readout nanosensor was applied to analyze the concentration of NO2- in real meat samples, achieving satisfactory recovery rates of 94.72-104.52%, highlighting the practical potential of this method. Furthermore, a portable Gel/Rh6G@UIO-66-NH2 hydrogel test kit was constructed for on-spot dual-mode detection of NO2-. This kit allows for convenient colorimetric analysis and fluorometric detection when used in conjunction with a smartphone. All the photos taken with the portable kit was converted into digital information using ImageJ software. It provides colorimetric and fluorescent visual detection of NO2- over a range of 0.1-1.5 mM, achieving a direct quantitative tool for NO2- identification. This methodology presents a promising strategy for NO2- detection and expands the application prospects for on-spot monitoring of food safety assessment.
Collapse
Affiliation(s)
- Siyang Deng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinting Yang
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Huan Liu
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| |
Collapse
|
10
|
Perera AAPR, Madhushani KAU, Kumar A, Gupta RK. Metal-organic frameworks for wastewater treatment: Recent developments, challenges, and future prospects. CHEMOSPHERE 2023; 339:139713. [PMID: 37549744 DOI: 10.1016/j.chemosphere.2023.139713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Wastewater treatment is critically important for the existence of life on earth; however, this approach involves the removal of toxic metal contaminants and organic pollutants, requiring efficient adsorbent materials. Within this agenda, metal-organic frameworks (MOFs) appear to be potential materials due to their unique properties as efficient adsorbents, effective photocatalysts, and reliable semi-permeable membranes. Therefore, MOFs have undergone various modifications over the years without desirable success to improve adsorption capacity, hydro-stability, reaction kinetics, and reusability. Therefore, scientists around the world got engaged in MOF research for novel modifications, including defect engineering, carbonization, and membrane fabrication, at the laboratory scale. This review focuses on developing MOF-based adsorbents, photocatalysts, and semi-permeable membranes for wastewater treatment since 2015, emphasizing their structural-functional relationships. Finally, the challenges and opportunities with MOFs in wastewater treatment are also underlined for future efforts.
Collapse
Affiliation(s)
- A A P R Perera
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, United States; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, United States
| | - K A U Madhushani
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, United States; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, United States
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Ram K Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, United States; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, United States.
| |
Collapse
|
11
|
Mohan B, Singh G, Chauhan A, Pombeiro AJL, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131324. [PMID: 37080033 DOI: 10.1016/j.jhazmat.2023.131324] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gurjaspreet Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Archana Chauhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|