1
|
Zhou J, Chen Y, Wang C, He Y, Lebedev AT, Zhang Y. Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137146. [PMID: 39787932 DOI: 10.1016/j.jhazmat.2025.137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: 1O2, SO4•-+•OH, •OH. The toxicity of ENR TPs generated from those systems was evaluated with multiple methods. It was found that the 1O2-dominated system detoxified ENR more effectively than the other systems in terms of microbial respiratory inhibition, developmental toxicity in zebrafish embryos, and three typical molecular biomarkers, including reactive oxygen species (ROS), and lactate dehydrogenase (LDH), and glutathione S-transferase (GST). Based on their chemical structures of ENR TPs projected with UPLC-QTOF-MS/MS, the toxicity prediction tool (T.E.S.T) revealed that the 1O2-dominated system led to more harmless TPs than the others. The results of this study underscore the great potential of 1O2-dominated system in the detoxification of organic contaminants.
Collapse
Affiliation(s)
- Jiawei Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Albert T Lebedev
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Zhang J, Zhang S, Lu C, Wang X, Du Z, Wang J, Li B, Wang J, Zhu L. Comparison of the combined toxicity of PFOA and emerging alternatives: A comprehensive evaluation of oxidative damage, apoptosis and immunotoxicity in embryonic and adult zebrafish. WATER RESEARCH 2025; 273:123028. [PMID: 39721502 DOI: 10.1016/j.watres.2024.123028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.5 and 5 μg L-1 as the test concentrations and simultaneously compared the combined toxicity of the substitutes and PFOA in terms of oxidative damage, neurotoxicity, apoptosis, and immunotoxicity in two developmental stages of zebrafish (adult and embryos) under the same test conditions. The results indicated that in both adult and embryonic zebrafish, PFHxA, PFBA, and PFOA disrupt redox homeostasis, stimulate cell proliferation, and lead to carcinogenesis. The mechanisms by which PFHxA and PFOA induce neurotoxicity and immunotoxicity were similar. Molecular docking analysis showed that the substitutes and PFOA stably attached to proteins and changed their structure and function. The obtained integrated biomarker response index values indicated that the toxicity of PFHxA, PFBA, and PFOA in zebrafish increased with increasing concentrations; PFHxA was more toxic than PFOA. The present study clarified the ecotoxicity of PFHxA and PFBA in zebrafish and simultaneously compared the differences in toxicity between the substitutes and PFOA to zebrafish, providing a robust scientific basis for the clarification and selection of safe substitutes to PFOA.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Shuolin Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
3
|
Li W, Wang S, Fan H, Wang Z, Liu Y, You H. Insights into hepatotoxicity of fluorinated liquid crystal monomer 1-ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (EDPrB) in adult zebrafish at environmentally relevant concentrations: Metabolic disorder and stress response. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136858. [PMID: 39742860 DOI: 10.1016/j.jhazmat.2024.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Fluorinated liquid crystal monomers (FLCMs) are widely employed in liquid crystal display (LCD) panels. As emerging environmental contaminants with persistent, bioaccumulative, and toxic properties, FLCMs were proven to accumulate in liver, raising great concern regarding potential hepatotoxicity. 1-Ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (EDPrB), as one representative FLCM, was chosen to investigate the hepatotoxicity in adult zebrafish (Danio rerio) at environmentally relevant concentrations (1, 10, and 100 μg/L) with long-term exposure (21 days). EDPrB caused morphological abnormalities, elevated transaminase activities, and inhibited antioxidant levels in zebrafish liver. The contents of total cholesterol and triglyceride were reduced by 2.3- and 1.82-fold, respectively, at 100 μg/L of EDPrB. Transcriptomic analysis revealed that EDPrB disrupted the lipid and glucose metabolisms, protein processing in endoplasmic reticulum (ER), and P53 signal pathway by dysregulating genes, such as fasn, acaca, acsl1b, hkdc1, xbp1, and ero1lb. EDPrB induced ER stress by activating PERK-eIF2α pathway, leading to hepatic metabolic dysfunction. PERK-eIF2α and P53-Bax/Bcl2 pathways were involved in EDPrB-induced apoptosis. Additionally, molecular simulation confirmed that EDPrB had a strong binding affinity to some lipid metabolism proteins (-8.9∼-6.7 kcal/mol) and stress proteins (-9.3∼-5.8 kcal/mol). The findings elucidate EDPrB-induced hepatotoxicity and underlying mechanisms, which contribute to assessing the ecological risk and pollution control of FLCMs.
Collapse
Affiliation(s)
- Wanlun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Huize Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ziwei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yingying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Sun D, He S, Li X, Jin B, Wu F, Liu D, Dong Z, Chen G. Toxic effects and mechanistic insights of cadmium telluride quantum dots on the homeostasis and regeneration in planarians. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137047. [PMID: 39754879 DOI: 10.1016/j.jhazmat.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels. The results showed that exposure to CdTe QDs led to tissue damage, abnormal motor behavior, delayed regeneration, morphological abnormalities, and reduced survival. Furthermore, CdTe QDs caused excessive stem cell proliferation, leading to defective differentiation of tissues such as the epidermis, cilia, protonephridia, muscle, and nerves. Neurotoxicity manifests as a reduction in the number of neurons and neurotransmitter imbalance. Further studies revealed that CdTe QDs induced cell death by promoting reactive oxygen species (ROS) accumulation, triggering oxidative stress and deoxyribonucleic acid (DNA) damage, which led to excessive mitochondrial fission and activation of the mitochondria-dependent apoptotic signaling pathway. Overall, the balance between stem cell proliferation, differentiation, and apoptosis was disrupted, ultimately leading to delayed regeneration and homeostatic imbalance. These findings offer new insights into the environmental risk assessment of QDs and provide valuable directions for further research on their toxic effects on human stem cells and regenerative processes.
Collapse
Affiliation(s)
- Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Siyuan He
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xuheng Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Fan Wu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Wang X, Yang X, Lu C, Zhang J, Li B, Du Z, Wang J, Wang J, Juhasz A, Yang Y, Zhu L. Are HFPO-TA and HFPO-DA safe substitutes for PFOA? A comprehensive toxicity study using zebrafish (Danio rerio) embryos and adults. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136718. [PMID: 39637815 DOI: 10.1016/j.jhazmat.2024.136718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Due to the multiple biotoxicity caused by perfluorooctanoic acid (PFOA), the application and production of PFOA is regulated globally. PFOA substitutes including hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA) have been applied to industrial processes and subsequently detected in surface and groundwater, yet there is a lack of comprehensive assessment of their toxicity to aquatic organisms. Therefore, under the same time and same experimental conditions, the toxic effects and differences of PFOA, HFPO-TA, and HFPO-DA on zebrafish adults and embryos were assessed from oxidative damage, apoptosis, immune function impairment, and protein interactions. The HFPO-TA and HFPO-DA caused more severe oxidative damage than PFOA. While PFOA only disrupted immune function in adults, HFPO-TA and HFPO-DA affected immune homeostasis in both adults and embryos. Integrated biomarker response results showed that superoxide dismutase (SOD) activity and reactive oxygen species content could be used as early warning indicators of toxicity in adults and embryos, respectively. Molecular docking simulations identified HFPO-TA as having the lowest binding energy with SOD proteins, thereby exerting the greatest effect on SOD activity. Compared to PFOA, HFPO-TA and HFPO-DA exhibited a greater toxicological response and, therefore, may not be suitable substitutes for PFOA.
Collapse
Affiliation(s)
- Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Xiao Yang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
6
|
Yang X, Gan Y, Zhang M, Xie S, Lin M, Zhong L, Song M, Wang J, Huang Y. Transcriptome analysis unveils the mechanisms of oxidative stress, immunotoxicity and neurotoxicity induced by benzotriazole UV stabilizer-328 in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117822. [PMID: 39884018 DOI: 10.1016/j.ecoenv.2025.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
As an emerging pollutant, ultraviolet stabilizer-328 (UV-328) has been frequently detected in aquatic environments and attracted great attention. Nevertheless, the toxicity and mechanisms of UV-328 to aquatic organisms are still not fully understood. In particular, the immunotoxicity and neurotoxicity of UV-328 to aquatic organisms and their mechanisms have not been reported yet. In this experiment, the developmental toxicity, oxidative stress, apoptosis, immunotoxicity and neurotoxicity in zebrafish embryos exposed to UV-328 with concentrations of 0.01, 0.1, 1, 10 and 100 µg/L for 120 h were studied. By measuring the growth and developmental indices, production of ROS, enzyme activities, MDA content and expression of genes related to oxidative, immune and nerve, and histopathological analysis, it was found that UV-328 had developmental toxicity to zebrafish larvae, and could induce oxidative stress, immunotoxicity and neurotoxicity to zebrafish larvae even at environmental concentrations with concentration-dependent effects. Moreover, the results of transcriptome analysis and qRT-PCR validation suggested that immune and nerve disorders were caused by UV-328 in zebrafish larvae through regulating the RIG-I-like receptor signaling pathway and neuroactive ligand-receptor interaction, respectively. In addition, transcriptome analysis further revealed that UV-328 could mediate the RIG-I to induce oxidative stress through p38-MAPK/p53 signaling pathway, leading to apoptosis and oxidative damage. In addition, the p38-MAPK signaling pathway enhanced ROS production and activated inflammatory cytokines to induce immunotoxicity. The results of the present work provided important information for understanding the toxicity of UV-328 to aquatic organisms and evaluating its ecological risk in aquatic environment.
Collapse
Affiliation(s)
- Xinlu Yang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yijing Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Menghuan Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaolin Xie
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingfu Lin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lixiang Zhong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yumei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Luo C, Zhang Q, Wang D, Xie H, Zheng S, Huang W, Huang Y, Shi X, Wu K. Tri-iso-butyl phosphate (TiBP) exposure induces neurotoxicity by triggering oxidative stress accompanied by neurotransmitter system disruptions and apoptosis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125137. [PMID: 39424049 DOI: 10.1016/j.envpol.2024.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The current research sheds light on the biological toxicity of organophosphate flame retardants (OPFRs), yet it overlooks the neurotoxicity and potential molecular mechanisms of tris(1,3-dichloro-2-propyl) phosphate (TiBP), a prominent constituent of the OPFRs. To address this, we utilized zebrafish larvae as a model to investigate TiBP's acute toxicity and neurotoxic effects, along with the associated molecular pathways. Our findings revealed that the 96 h and 120 h LC50 values for TiBP were 56.51 mg/L and 48.85 mg/L, respectively. Gradient exposure based on the 120 h LC50 demonstrated that TiBP induced developmental toxicity, characterized by elevated heart rate, reduced body length, and diminished eye distance. Additionally, a decrease in swimming activity was observed in the light test, along with the inhibition of the neuro crest cell development in Tg (HuC:eGFP) and Tg (sox10: eGFP) zebrafish larvae following TiBP exposure, as well as the alterations of neurogenesis and ACh-related genes. Expression of key neurodevelopment genes, including mbpa, gap43, nestin, ngfra, was significantly downregulated. Furthermore, heightened anxiety-like behaviors in open field and phototaxis tests were observed, concomitant with neurotransmitter imbalances. Specifically, there was an increase in DA levels, a decrease in GABA, and an upregulation of AChE activity. These disruptions were primarily mediated through transcriptional dysregulation of neurotransmitter synthesis, transport, and reception. Upon exposure to TiBP, zebrafish larvae exhibited a concentration-dependent increase in both ROS level and apoptosis. An upregulation of antioxidant enzymes and their transcription levels indicated the presence of oxidative stress in the larvae. The induction of ddit3 was congruent with the observed apoptosis, suggesting that it may be triggered by oxidative stress via the ERs-CHOP pathway. In summary, our study indicates that oxidative stress is a pivotal molecular event in the neurotoxicity induced by TiBP, implicating the disruption of the GABAergic, dopaminergic, and cholinergic systems, as well as triggering apoptosis.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
8
|
Verma CR, Khare T, Chakraborty P, Gosavi SM, Petrtýl M, Kalous L, Kumkar P. Impact of diethyl phthalate on freshwater planarian behaviour, regeneration, and antioxidant defence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107110. [PMID: 39378734 DOI: 10.1016/j.aquatox.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diethyl phthalate (DEP) has been widely used as a plasticiser in various consumer products, including cosmetics, personal care items, and pharmaceuticals, and recent studies reported a higher abundance of this priority phthalate in the aquatic environment. DEP is a potential endocrine disruptor, affecting immune systems in humans and wildlife even at low-level chronic exposure. As concern over phthalates increases globally, regulatory bodies focus more on their environmental impact. However, limited research is available, particularly using model organisms like planarians. Planarians are ideal for toxicological studies and may provide insightful information on pollutants' neurotoxic, developmental, and ecological effects, especially in freshwater environments where planarians play a vital role in ecosystem balance. Therefore, the objective of the current study was to examine the toxicity of DEP using the freshwater Dugesia sp., as an experimental animal. The LC50 for the test organism was calculated using DEP concentrations of 800, 400, 200, 100, and 50 µM, with an estimated LC50 of 357.24 µM. Furthermore, planarians were exposed to sub-lethal DEP concentration (178.62 µM) for one day as well as eight days to evaluate the impact of DEP on planarian locomotion, feeding behaviour, and regeneration ability. At sub-lethal concentration, locomotion and feeding ability were decreased, and regeneration was delayed. Furthermore, neuro-transmittance in planaria was altered by sub-lethal DEP concentration, as indicated by a reduced acetylcholinesterase (AChE) activity. DEP exposure induced oxidative damage in the tested planarians as shown by a marked increase in stress biomarkers, including lipid peroxidation levels and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST). Our study revealed that DEP exposure may prove fatal to freshwater organisms, such as planarians. The observed alterations in behaviour and regeneration ability demonstrate the severity of the effects exerted by DEP as a toxicant in aquatic ecosystems, thereby indicating the need to restrict its usage to protect aquatic environments.
Collapse
Affiliation(s)
- Chandani R Verma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Tushar Khare
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
9
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
10
|
Wu F, Kong Z, Ge P, Sun D, Liu D, Dong Z, Chen G. Ecotoxicological evaluation and regeneration impairment of planarians by dibutyl phthalate. ENVIRONMENTAL RESEARCH 2024; 257:119403. [PMID: 38871274 DOI: 10.1016/j.envres.2024.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.
Collapse
Affiliation(s)
- Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Peng Ge
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Ding P, Xiang C, Yao Q, Li X, Zhang J, Yin R, Zhang L, Li AJ, Hu G. Aged polystyrene microplastics exposure affects apoptosis via inducing mitochondrial dysfunction and oxidative stress in early life of zebrafish. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121995. [PMID: 39083943 DOI: 10.1016/j.jenvman.2024.121995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In recent years, the toxic effects of microplastics (MPs) on aquatic organisms have been increasingly recognized. However, the developmental toxicity and underlying mechanisms of photoaged MPs at environmental concentrations remain unclear. Therefore, the photodegradation of pristine polystyrene (P-PS) under UV irradiation was used to investigate, as well as the developmental toxicity and underlying mechanisms of zebrafish (Danio rerio) exposed to P-PS and aged polystyrene (A-PS) at environmentally relevant concentrations (0.1-100 μg/L). Mortality, heart rate, body length, and tail coiling frequency of zebrafish larvae were the developmental toxicity endpoints. A-PS had increased crystallinity, the introduction of new functional groups, and higher oxygen content after UV-photoaging. The toxicity results showed that exposure to A-PS resulted in more adverse developmental toxicity than exposure to P-PS. Exposure to A-PS induced oxidative damage, as evidenced by elevated production of reactive oxygen species (ROS) and DNA damage, and led to decreased mitochondrial membrane potential (MMP) and causes the release of cytochrome c (cyt c) from the mitochondria. The caspase-3/-9 activation signaling pathways may cause developmental toxicity via mitochondrial apoptosis. Significant changes in the expression of genes were further explored linking with oxidative stress, mitochondria dysfunctions and apoptosis pathways following A-PS exposure. These findings underscore the importance of addressing the environmental applications of aged MPs and call for further research to mitigate their potential risks on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Ping Ding
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Qian Yao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
12
|
Lin J, Liu H, Huang X, Deng Y. Toxicological effects of Honokiol on zebrafish and its underlying mechanism. J Biochem Mol Toxicol 2024; 38:e23789. [PMID: 39097765 DOI: 10.1002/jbt.23789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
The compound Honokiol, derived from the bark of Magnolia officinalis, possesses the ability to induce apoptosis and inhibit cellular damage caused by reactive oxygen species. The objective of this study was to investigate the toxicological and histopathological effects of Honokiol on zebrafish (Danio rerio) through conducting a semistatic acute toxicity test involving immersion in an Honokiol-containing solution. The results showed that the toxic effects of Honokiol on zebrafish were primarily manifested in the liver and gills. When exposed to 0.6 mg/L of Honokiol, it could lead to liver hemorrhage as well as swelling and necrosis of gill tissues, and high concentrations of Honokiol could trigger inflammatory responses. Additionally, research found that Honokiol could induce apoptosis in liver and gill tissues through the P53 pathway and possessed the ability to enhance antioxidation. The present findings significantly contribute to a more profound understanding of the toxic impact of Honokiol and its underlying mechanism, thereby providing a valuable reference for the future safe utilization of Honokiol and related pharmaceutical advancements.
Collapse
Affiliation(s)
- Jue Lin
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Xie W, Chen J, Cao X, Zhang J, Luo J, Wang Y. Roxithromycin exposure induces motoneuron malformation and behavioral deficits of zebrafish by interfering with the differentiation of motor neuron progenitor cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116327. [PMID: 38626605 DOI: 10.1016/j.ecoenv.2024.116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Roxithromycin (ROX), a commonly used macrolide antibiotic, is extensively employed in human medicine and livestock industries. Due to its structural stability and resistance to biological degradation, ROX persists as a resilient environmental contaminant, detectable in aquatic ecosystems and food products. However, our understanding of the potential health risks to humans from continuous ROX exposure remains limited. In this study, we used the zebrafish as a vertebrate model to explore the potential developmental toxicity of early ROX exposure, particularly focusing on its effects on locomotor functionality and CaP motoneuron development. Early exposure to ROX induces marked developmental toxicity in zebrafish embryos, significantly reducing hatching rates (n=100), body lengths (n=100), and increased malformation rates (n=100). The zebrafish embryos treated with a corresponding volume of DMSO (0.1%, v/v) served as vehicle controls (veh). Moreover, ROX exposure adversely affected the locomotive capacity of zebrafish embryos, and observations in transgenic zebrafish Tg(hb9:eGFP) revealed axonal loss in motor neurons, evident through reduced or irregular axonal lengths (n=80). Concurrently, abnormal apoptosis in ROX-exposed zebrafish embryos intensified alongside the upregulation of apoptosis-related genes (bax, bcl2, caspase-3a). Single-cell sequencing further disclosed substantial effects of ROX on genes involved in the differentiation of motor neuron progenitor cells (ngn1, olig2), axon development (cd82a, mbpa, plp1b, sema5a), and neuroimmunity (aplnrb, aplnra) in zebrafish larvae (n=30). Furthermore, the CaP motor neuron defects and behavioral deficits induced by ROX can be rescued by administering ngn1 agonist (n=80). In summary, ROX exposure leads to early-life abnormalities in zebrafish motor neurons and locomotor behavior by hindering the differentiation of motor neuron progenitor cells and inducing abnormal apoptosis.
Collapse
Affiliation(s)
- Wenjie Xie
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Juntao Chen
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China.
| | - Yajun Wang
- Key Laboratory of Bioresources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Cui J, Zhu M, Sun X, Yang J, Guo M. Microplastics induced endoplasmic reticulum stress to format an inflammation and cell death in hepatocytes of carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106870. [PMID: 38395010 DOI: 10.1016/j.aquatox.2024.106870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Microplastics (MPs) are a serious threat to the living environment of aquatic organisms. However, there are fewer studies on the toxicity of microplastics to freshwater organisms. This study aimed to establish a polystyrene microplastics (PS-MPs) model by feeding carp (Cyprinus carpio) PS-MP (1000 ng/L) particles 8 μm in size. HE staining revealed a mass of inflammatory cells infiltrated in the carp hepatopancreas. The activities of alkaline phosphatase (AKP), aspartate transaminase (AST), lactate dehydrogenase (LDH), and alanine transaminase (ALT) were strengthened considerably, suggesting that PS-MPs cause injury to the hepatopancreas of carp. Real-Time polymerase chain reaction and western blotting results indicated increased levels of glucose-regulated protein 78 (GRP78), (PKR)-like ER kinase (PERK), eukaryotic translation initiation Factor 2α (EIF2α) and activating transcription Factor 4 (ATF4) genes and increased levels of inflammatory factors downstream of endoplasmic reticulum stress (ERs) thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), interleukin-18 (IL-18), interleukin-1β (IL-1β), and caspase 1. Increased expression of microtubule-associated protein-2 (LC3II), autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) genes revealed that PS-MPs promoted autophagy in carp hepatocytes. The enhanced expression of the Caspase 12, Caspase 3, and Bax genes suggested that PS-MPs led to the apoptosis of carp hepatocytes. These results suggest that PS-MPs result in serious injury to the hepatopancreas of carp. The present study of PS-MPs in freshwater fish from the aspect of endoplasmic reticulum stress was conducted to provide references and suggestions for toxicological studies of PS-MPs in freshwater environments.
Collapse
Affiliation(s)
- Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengran Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Zhang J, Bai Y, Meng H, Zhu Y, Yue H, Li B, Wang J, Wang J, Zhu L, Du Z. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169787. [PMID: 38181941 DOI: 10.1016/j.scitotenv.2023.169787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) and polyhalogenated carbazoles (PHCZs) are widely detected in the aquatic environment, and their ecological risks have become a research focus. Although there is an extensive co-distribution of MPs and PHCZs, their combined toxicity to aquatic organisms is still unclear. This study investigated the toxic effects of polystyrene microplastics (PS-MPs) and 3,6-dibromocarbazole (3,6-DBCZ) on zebrafish embryos by individual/combined exposure. This study showed that individual or combined exposure of PS-MPs (10 mg/L) and 3,6-DBCZ (0.5 mg/L) could significantly increase the rate of zebrafish embryo deformity, whereas no significant effect was observed on mortality and hatching rate. Furthermore, exposure to 3,6-DBCZ or PS-MPs increased reactive oxygen species (ROS) levels in zebrafish embryos, and the resulting oxidative stress induced apoptosis. Comparably, the levels of oxidative stress and apoptosis in zebrafish embryos were significantly reduced with the combined exposure of 3,6-DBCZ and PS-MPs. These observations suggest that the combined exposure of 3,6-DBCZ and PS-MPs has an antagonistic effect on oxidative stress and apoptosis. Fluorescence PS-MPs tracing and 3,6-DBCZ enrichment analysis showed that, with the protection of chorion, the entry of PS-MPs (5 and 50 μm) into the embryonic stage (55 hpf) of zebrafish was prevented. Moreover, after exposure for 96-144 hpf, PS-MPs served as a carrier to promote the 3,6-DBCZ accumulation and its dioxin-like toxicity in zebrafish larvae through ingestion. Compared with 5-μm PS-MPs, 50-μm PS-MPs promoted higher accumulation and dioxin-like toxicity of 3,6-DBCZ in zebrafish larvae. These findings provide that MPs can be used as an important carrier of PHCZs, influencing their toxicity and bioaccumulation in the organisms.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yao Bai
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Haoran Meng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yangzhe Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Huizhu Yue
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|