1
|
Zhang YS, Chen XJ, Huang XT, Bai CW, Duan PJ, Zhang ZQ, Chen F. Enhanced peroxone reaction with amphoteric oxide modulation for efficient decontamination of challenging wastewaters: Comparative performance, economic evaluation, and pilot-scale implementation. WATER RESEARCH 2025; 274:123058. [PMID: 39740329 DOI: 10.1016/j.watres.2024.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The peroxone reaction, a promising alternative technology for water treatment, is traditionally hampered by its restricted pH operational range and suboptimal oxidant utilization. In this study, we introduced a novel amphoteric metal oxide (ZnO)-regulated peroxone system that transcended the pH limitations of conventional peroxone processes. Our innovative approach exploited the unique properties of ZnO to regulate the reaction pathway of the traditional O3/H2O2 (or peroxymonosulfate, PMS) processes, resulting in a 52.4 % (64.9 %) increase in the removal efficiency of electron-deficient pollutant atrazine under acidic conditions (pH=5.8). This was achieved through the facilitated generation of hydroxyl radicals (•OH) and sulfate radicals (SO4•-), alongside a marked increase in the utilization efficiency of O3, thus reducing the requisite amount of oxidant. The primary active sites within this system were identified as zinc-oxidant sites, with the critical interfacial interactions between ZnO and oxidants elucidated through comprehensive analytical techniques. These studies reveal that ZnO acted as an electron acceptor, with H2O2 (or PMS) serving as the electron donor, leading to the formation of a reactive intermediate. This intermediate subsequently engaged with O3, producing secondary radicals such as HO2• (SO5•-) and O3•-, which were instrumental in generating the final radical species, •OH and SO4•-. The efficacy of this ZnO-regulated peroxone process was validated through resistance to interference tests, treatment of pilot-scale coking wastewater (mineralization rate of over 70 %), and extensive biological toxicity evaluations, all of which validated the system's robust degradation capability, stability, and significant detoxification potential. A detailed comparison of reaction systems with conventional technologies using Electrical Energy per Order (EE/O) and Life Cycle Assessment (LCA) further highlighted the advantages. This investigation offers a groundbreaking solution for the treatment of complex wastewater, showcasing the substantial promise of ZnO-catalyzed peroxone for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
2
|
Xu H, Chen W, Zhang Q, Song N, Ding M. Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124196. [PMID: 39842359 DOI: 10.1016/j.jenvman.2025.124196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS). The findings revealed that, compared to OLBs, OCBs increased the total mass transfer coefficient by 1.46 times and the half-life of ozone by 4 times. Consequently, OCBs enhanced the removal rates of CODcr, NH4+-N, UV254, and TOC at the 30-min mark by 8.91%, 8.65%, 10.11%, and 2.15%, respectively. In the raw water, 710 organic compounds were detected, decreasing to 668 and 478 after treatment with OLBs and OCBs, respectively. Furthermore, the organic compounds with higher molecular weight and unsaturation degree were more prone to mineralization in the OCBs process. It was also identified that OCBs exhibited nearly 100% removal of amines, unsaturated hydrocarbons, aldehydes, phenols, and aromatic amides. It is noteworthy that, among the 15 identified emerging contaminants (ECs), the removal efficiency of OCBs (53.3%) was higher than that of OLBs (33.3%), with fewer by-products. More deeply, based on 30 common reactions, the primary reactions occurring in OLBs treatment were dealkylations, whereas the abundant hydroxyl radicals in OCBs treatment facilitated the oxidation reaction (+O). This study contributes to the exploration of the potential of OCBs technology in treating secondary effluent, providing invaluable insights for its rational application in practical scenarios.
Collapse
Affiliation(s)
- Hang Xu
- College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Weihang Chen
- College of Environment, Hohai University, Nanjing, 210098, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Qian Zhang
- College of Environment, Hohai University, Nanjing, 210098, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Mingmei Ding
- College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
3
|
Wu DX, Ye B, Wang WL, Wu QY. Increased formation of brominated disinfection by-products and toxicities during low-H 2O 2-mediated ozonation of reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176276. [PMID: 39317261 DOI: 10.1016/j.scitotenv.2024.176276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Reusing reclaimed water requires stringent disinfection but inevitably generates disinfection by-products (DBPs). H2O2/O3 treatment is an efficient and environmentally benign disinfection method. For the first time, our bioassay results elucidate that low H2O2/O3 ratio (molar) treated water increased unignorable toxicity effect compared to that of the high H2O2/O3 ratio. To clarify this finding, individual organic brominated DBPs (Br-DBPs), bromate, and adsorbable organic bromine (AOBr) were considered due to their potential risk. Organic Br-DBPs were mainly generated from ozone-induced pathways. Individual organic Br-DBPs were not the primary concern in this scenario because they are typically only produced in observable quantities at bromide concentrations exceeding 500 μg/L, and even then, they often remain below detection limits when treated with H2O2/O3. On the contrary, both bromate and AOBr were detectable at low H2O2/O3 ratios. Furthermore, bromate is produced from HOBr and bromine radicals induced by HO•. Moreover, bromate formation was promoted because of increased HO• formation, particularly at H2O2/O3 ratios <0.24. To prevent HO•-induced pathways from being dominant, higher H2O2/O3 ratios (>0.48) were required. Toxicity assays revealed that AOBr-included organic extracts of ozonated reclaimed water induced more toxic effects. The toxicity induced by the organic fraction resulted from its decreased oxidation level, which was, in turn, driven by the increased formation of bromate. Enhanced toxicity effects were observed when cells were exposed to a bromate and organic extract mixture. It indicates that both the AOBr and bromate present in low-H2O2-O3-treated reclaimed water pose potential risks, and their coexistence further elevates these risks. Increasing the H2O2/O3 ratio markedly decreased the generation of intracellular oxidative substances and oxidative damage. In conclusion, when treated with H2O2/O3, shifting from HO•-induced pathways to ozone-induced pathways by a relatively high H2O2/O3 ratio decreased the amounts of DBPs produced and controlled the toxic effects to ensure the safety of ozonated reclaimed water.
Collapse
Affiliation(s)
- De-Xiu Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Bei Ye
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Nong YJ, Wu QY, Wu YP, Lee JW, Lee MY, Wang WL. Far-UVC (UV222) based photolysis, photooxidation, and photoreduction of chlorophenols using a KrCl-excimer lamp: Degradation, dechlorination, and detoxification. WATER RESEARCH 2024; 268:122560. [PMID: 39388776 DOI: 10.1016/j.watres.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
The KrCl-excimer lamp, emitting far-UVC light at 222 nm (UV222), offers a promising alternative to conventional UVC light at 254 nm (UV254) for the photolysis of organic pollutants and the activation of radical sensitizers. This study was aimed to investigate the efficiencies of UV222 in the treatment of halogenated aromatics, focusing on its performance in degradation, dechlorination and detoxification. Chlorophenols, representative recalcitrant and toxic halogenated aromatics, were used as target pollutants. The pathways of direct photolysis, photooxidation and photoreduction under UV222 illumination were compared. UV222 outperformed UV254 in photolyzing chlorophenols (1.4-34.1 times faster), especially protonated chlorophenols, due to substantially higher UV absorption (17.1-108.0 times) and quantum yields (2.1-3.4 times). The quantum yields of chlorophenols were influenced by the inducive electron-withdrawing effect of Cl-substitutes. Moreover, UV222 improved the dechlorination of chlorophenols to 95 % compared to 60 % by UV254. The introduction of radical sensitizer (e.g., H2O2, nitrate, and sulfite) reduced 4-chlorophenol photolysis by competing for UV222 absorption, though the sensitizers partially increased radical oxidation via generating •OH or eaq-. UV222 photolysis of 4-chlorophenol increased the toxicity by 88.6 times through forming toxic intermediates (e.g., hydroquinone and resorcinol). Notably, •OH and eaq- (i.e., UV222/H2O2 and UV222/sulfite) increased the dechlorination and •OH (i.e., UV222/H2O2) detoxified the mixture solution. Moreover, UV222 photolysis remained effective for 4-chlorophenol removal in real paper-mill wastewater, indicating the potential application of KrCl* lamp UV222.
Collapse
Affiliation(s)
- Yu-Jia Nong
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yun-Peng Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ju-Won Lee
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Jin B, Cheng S, Li L, Li H, Zhou Y, Chen H. Self-supporting three-dimensional CuNi-Sb-SnO 2 anode with ultra-long service life for efficient removal of antibiotics in wastewater. CHEMOSPHERE 2024; 365:143388. [PMID: 39307471 DOI: 10.1016/j.chemosphere.2024.143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Electrochemical ozone production (EOP) is a promising technology for the removal of contaminants in wastewater. However, traditional two-dimensional anodes for EOP are restricted by their reliance on substrates and limited surface area, thus exhibiting poor stability and efficiency. Herein, a novel three-dimensional Sb-SnO2 with Cu and Ni co-doped (3D CuNi-ATO) was synthesized via a facile pressing-sintering method without the Ti substrate. 3D CuNi-ATO had a specific surface area two orders of magnitude higher than conventional CuNi-ATO/Ti, as well as the significant capability of EOP that differs from intrinsic 3D ATO. This endowed 3D CuNi-ATO with the capability to remove tetracycline with a pseudo-first-order rate constant of 0.033 min-1 under a low current density of 5 mA cm-2 within 120 min, which was far more efficient than that by 3D ATO and other two-dimensional anodes reported. The 3D CuNi-ATO was confirmed stable in 100 cycles and had an accelerated service lifetime of over 1100 h versus 83 h of CuNi-ATO/Ti. The degradation of tetracycline in complex matrix and flow-through reactors further revealed the promising potential of 3D CuNi-ATO to be applied in scenarios of practical application and continuous high-rate treatment.
Collapse
Affiliation(s)
- Beichen Jin
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Longxin Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huahua Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Zhou
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Chen
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Cha D, Park S, Kim MS, Lee J, Lee Y, Cho KH, Lee C. Prediction of hydroxyl radical exposure during ozonation using different machine learning methods with ozone decay kinetic parameters. WATER RESEARCH 2024; 261:122067. [PMID: 39003877 DOI: 10.1016/j.watres.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The abatement of micropollutants by ozonation can be accurately calculated by measuring the exposures of molecular ozone (O3) and hydroxyl radical (•OH) (i.e., ∫[O3]dt and ∫[•OH]dt). In the actual ozonation process, ∫[O3]dt values can be calculated by monitoring the O3 decay during the process. However, calculating ∫[•OH]dt is challenging in the field, which necessitates developing models to predict ∫[•OH]dt from measurable parameters. This study demonstrates the development of machine learning models to predict ∫[•OH]dt (the output variable) from five basic input variables (pH, dissolved organic carbon concentration, alkalinity, temperature, and O3 dose) and two optional ones (∫[O3]dt and instantaneous ozone demand, IOD). To develop the models, four different machine learning methods (random forest, support vector regression, artificial neural network, and Gaussian process regression) were employed using the input and output variables measured (or determined) in 130 different natural water samples. The results indicated that incorporating ∫[O3]dt as an input variable significantly improved the accuracy of prediction models, increasing overall R2 by 0.01-0.09, depending on the machine learning method. This suggests that ∫[O3]dt plays a crucial role as a key variable reflecting the •OH-yielding characteristics of dissolved organic matter. Conversely, IOD had a minimal impact on the accuracy of the prediction models. Generally, machine-learning-based prediction models outperformed those based on the response surface methodology developed as a control. Notably, models utilizing the Gaussian process regression algorithm demonstrated the highest coefficients of determination (overall R2 = 0.91-0.95) among the prediction models.
Collapse
Affiliation(s)
- Dongwon Cha
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghun Park
- Department of Environmental Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Min Sik Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk-do 54896, Republic of Korea
| | - Jaesang Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Ziembowicz S, Kida M. The effect of water ozonation in the presence of microplastics on water quality and microplastics degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172595. [PMID: 38642756 DOI: 10.1016/j.scitotenv.2024.172595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The occurrence of microplastics in water treatment plants poses a concern for the quality of treated water. When microplastics pass through water treatment plants, they can be oxidized, changing their surface characteristics and the quality of the treated water. This work aimed to investigate the impact of ozone and the association of ozone and hydrogen peroxide on five different microplastic particles that are commonly detected in water samples. The changes in the concentration of total organic carbon and the change in the pH of the water, the leaching of phthalic acid esters, as well as the changes in size and chemical changes in the structure of the tested microplastics were evaluated. The influence of ozonation time, water pH, and type of microplastics, as well as the influence of the addition of hydrogen peroxide, was analyzed. The effect of ozonation was an increase in DOC values ranging from 0.8 to 28 mg/L. The eluting substances included phthalic acid esters, plasticizers with a proven negative impact on organisms. The percentage loss of the surface area of the microplastic was in the range of 1.3 to 26.7 %. PE was more susceptible to degradation. LDIR analyzes were carried out to investigate the effect of O3 and O3/H2O2 treatments on the surface of MPs. This study demonstrated that MPs could change their physical and chemical characteristics if they are subjected to oxidation processes used in water treatment plants. The parameters of purified water change to unfavorable ones due to the leaching of additives. Although much research has been conducted on the occurrence of microplastics in treated water, awareness needs to be raised about the interactions between plastic particles and water treatment technology processes.
Collapse
Affiliation(s)
- Sabina Ziembowicz
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 6, Poland.
| | - Małgorzata Kida
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, 35-959 Rzeszów, al. Powstańców Warszawy 6, Poland
| |
Collapse
|
8
|
Lu S, Peng J, Shang C, Yin R. Dissolved Organic Matter-Mediated Photosensitized Activation of Monochloramine for Micropollutant Abatement in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9370-9380. [PMID: 38743251 DOI: 10.1021/acs.est.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Utilizing solar light and water matrix components in situ to reduce the chemical and energy demands would make treatment technologies more sustainable for micropollutant abatement in wastewater effluents. We herein propose a new strategy for micropollutant abatement through dissolved organic matter (DOM)-mediated photosensitized activation of monochloramine (NH2Cl). Exposing the chlorinated wastewater effluent with residual NH2Cl to solar irradiation (solar/DOM/NH2Cl process) degrades six structurally diverse micropollutants at rate constants 1.26-34.2 times of those by the solar photolysis of the dechlorinated effluent (solar/DOM process). Notably, among the six micropollutants, the degradation rate constants of estradiol, acetaminophen, bisphenol A, and atenolol by the solar/DOM/NH2Cl process are 1.13-4.32 times the summation of those by the solar/DOM and solar/NH2Cl processes. The synergism in micropollutant degradation is attributed to the generation of reactive nitrogen species (RNS) and hydroxyl radicals (HO·) from the photosensitized activation of NH2Cl. Triplet state-excited DOM (3DOM*) dominates the activation of NH2Cl, leading to the generation of RNS, while HO· is produced from the interactions between RNS and other photochemically produced reactive intermediates (e.g., O2·- and DOM·+/·-). The findings advance the knowledge of DOM-mediated photosensitization and offer a sustainable method for micropollutant abatement in wastewater effluents containing residual NH2Cl.
Collapse
Affiliation(s)
- Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiadong Peng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
9
|
Mortazavi M, Garg S, Waite TD. Kinetic modelling assisted balancing of organic pollutant removal and bromate formation during peroxone treatment of bromide-containing waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133736. [PMID: 38377900 DOI: 10.1016/j.jhazmat.2024.133736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
The peroxone process (O3/H2O2) is reported to be a more effective process than the ozonation process due to an increased rate of generation of hydroxyl radicals (•OH) and inhibition of bromate (BrO3-) formation which is otherwise formed on ozonation of bromide containing waters. However, the trade-off between the H2O2 dosage required for minimization of BrO3- formation and effective pollutant removal has not been clearly delineated. In this study, employing experimental investigations as well as chemical modelling, we show that the concentration of H2O2 required to achieve maximum pollutant removal may not be the same as that required for minimization of BrO3- formation. At the H2O2 dosage required to minimize BrO3- formation (<10 µg/L), only pollutants with high to moderate reactivity towards O3 and •OH are effectively removed. For pollutants with low reactivity towards O3/•OH, high O3 (O3:DOC>>1 g/g) and high H2O2 dosages (O3:H2O2 ∼1 (g/g)) are required for minimizing BrO3- formation along with effective pollutant removal which may result in a very high residual of H2O2 in the effluent, causing secondary pollution. On balance, we conclude that the peroxone process is not effective for the removal of low reactivity micropollutants if minimization of BrO3- formation is also required.
Collapse
Affiliation(s)
- Mahshid Mortazavi
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Zhao B, Park K, Kondo D, Wada H, Nakada N, Nishimura F, Ihara M, Tanaka H. Comparison on removal performance of virus, antibiotic-resistant bacteria, cell-associated and cell-free antibiotic resistance genes, and indicator chemicals by ozone in the filtrated secondary effluent of a sewage treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133347. [PMID: 38150766 DOI: 10.1016/j.jhazmat.2023.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Due to the widespread appearance of viruses, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) in the aquatic environment, more powerful oxidation processes such as ozonation are needed to enhance the efficiency of their inactivation and removal during wastewater treatment. However, information is lacking on the elimination rates of viruses, ARBs, cell-associated ARGs (ca-ARGs), and cell-free ARGs (cf-ARGs) during ozonation. This study examined the kinetics and dose-dependent inactivation of a virus (MS2 coliphage) and an ARB (Ampicillin-resistant [AmpR] E. coli) and the removal of ca- and cf-ARGs (plasmid-encoded blaTEM) by ozonation in a filtered secondary effluent (SE) of a municipal sewage treatment plant (STP). In addition, the ozonation kinetics of carbamazepine (CBZ) and metoprolol (MTP)-ubiquitous organic micropollutants with different removal rate constants-were also investigated in order to monitor their effectiveness as indicators for the abovementioned biological risk factors. Our results showed that ozonation was an efficient way to remove MS2, AmpRE. coli, ARGs, CBZ, and MTP. We investigated the kinetics of their inactivation/removal with respect to exposure in terms of CT (dissolved ozone concentration C and contact time T) value, and found their inactivation/removal constants were in the following order: MS2 (8.66 ×103 M-1s-1) ≈ AmpRE. coli (8.19 ×103 M-1s-1) > cf-ARG (3.95 ×103 M-1s-1) > CBZ (3.21 ×103 M-1s-1) > ca-ARG (2.48×103 M-1s-1) > MTP (8.35 ×102 M-1s-1). In terms of specific ozone dose, > 5-log inactivation of MS2 was observed at > 0.30 mg O3/mg DOC, while > 5-log inactivation of AmpRE. coli was confirmed at 1.61-2.35 mg O3/mg DOC. Moreover, there was almost no removal of ca-ARG when the specific ozone dose was < 0.68 mg O3/mg DOC. However, 2.86-3.42-log removal of ca-ARG was observed at 1.27-1.31 mg O3/mg DOC, while 1.14-1.36-log removal of cf-ARG was confirmed at 3.60-4.30 mg O3/mg DOC. As alternative indicators, > 4-log removal of CBZ was observed at > 1.00 mg O3/mg DOC, while > 2-log removal of MTP was confirmed at > 2.00 mg O3/mg DOC. Thus, it was observed that inactivation of E. coli needs a greater ozone dose to achieve the same level of inactivation of AmpRE. coli; for ARGs, cf-ARG can persist longer than ca-ARG if low dosages of ozone are applied in the filtrated SE, CBZ might act as an indicator with which to monitor the inactivation of viruses and ARBs, while MTP might act as an indicator with which to monitor removal of ARGs. Moreover, cf-ARG cannot be neglected even after ozonation due to the possibility that ca-ARGs can become cf-ARGs during ozonation and be discharged with the final effluent, posing a potential risk to the receiving environment.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Kyoungsoo Park
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Daisuke Kondo
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroyuki Wada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku city, Kochi 783-8502, Japan.
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
11
|
Cao Y, Li J, Wang Z, Guan C, Jiang J. The synergistic effect of oxidant-peroxide coupling systems for water and wastewater treatments. WATER RESEARCH 2024; 249:120992. [PMID: 38096724 DOI: 10.1016/j.watres.2023.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
With the growing complexity and severity of water pollution, it has become increasingly challenging to effectively remove contaminants or inactivate microorganisms just by traditional chemical oxidants such as O3, chlorine, Fe(VI) and Mn(VII). Up till now, numerous studies have indicated that these oxidants in combination with peroxides (i.e., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), peracetic acid (PAA) and periodate (PI)) exhibited excellent synergistic oxidation. This paper provided a comprehensive review on the combination of aforementioned oxidant-peroxide applied in water and wastewater treatments. From one aspect, the paper thoroughly elucidated the synergy mechanism of each oxidant-peroxide combination in turn. Among these combinations, H2O2 or PMS generally performed as the activator of four traditional oxidants above to accelerate reactive species generation and therein various reaction mechanisms, including electron transfer, O atom abstraction and oxo ligand substitution, were involved. In addition, although neither PAA nor PI was able to directly activate Fe(VI) and Mn(VII), they could act as the stabilizer of intermediate reactive iron/manganese species to improve the latter utilization efficiency. From another aspect, this paper summarized the influence of water quality parameters, such as pH, inorganic ions and natural organic matter (NOM), on the oxidation performance of most combined systems. Finally, this paper highlighted knowledge gaps and identified areas that require further research.
Collapse
Affiliation(s)
- Ying Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, 519087, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
12
|
Khan Q, Sayed M, Khan JA, Rehman F, Noreen S, Sohni S, Gul I. Advanced oxidation/reduction processes (AO/RPs) for wastewater treatment, current challenges, and future perspectives: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1863-1889. [PMID: 38063964 DOI: 10.1007/s11356-023-31181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Advanced oxidation/reduction processes (AO/RPs) are considered as effective water treatment technologies and thus could be used to solve the problem of water pollution. These technologies of wastewater treatment involve the production of highly reactive species such as •OH, H•, e-aq, SO4•-, and SO3•-. These radicals can attack the targeted contaminants present in aqueous media and result in their destruction. The efficiency of AO/RPs is highly affected by various operational parameters such as initial concentration of contaminant, solution pH, catalyst amount, intensity of light source, nature of oxidant and reductant used, and the presence of various ionic species in aquatic media. Among AO/RPs, the solar light-based AO/RPs are most widely used nowadays for contaminant removal from aqueous media because of their high environmental friendliness and cost effectiveness. By using these techniques, almost all types of pollutants can be easily removed from aquatic media within short intervals of time, and hence, the problem of water pollution can be solved effectively. This review focuses on various AO/RPs used for wastewater treatment. The effects of different operational parameters that affect the efficiency of these processes toward contaminant removal have been discussed. Besides, challenges and future recommendations are also briefly provided for the researchers in order to improve the efficiency of these processes.
Collapse
Affiliation(s)
- Qaiser Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Murtaza Sayed
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan.
| | - Javed Ali Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Rehman
- Department of Chemistry, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saima Sohni
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ikhtiar Gul
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
13
|
Moradi N, Vazquez CL, Hernandez HG, Brdjanovic D, van Loosdrecht MCM, Rincón FR. Removal of contaminants of emerging concern from the supernatant of anaerobically digested sludge by O 3 and O 3/H 2O 2: Ozone requirements, effects of the matrix, and toxicity. ENVIRONMENTAL RESEARCH 2023; 235:116597. [PMID: 37442255 DOI: 10.1016/j.envres.2023.116597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Digestate is a rich source of nutrients that can be applied in agricultural fields as fertilizer or irrigation water. However, most of the research about application of digestate have focused on its agronomic properties and neglected the potential harm of the presence of contaminants of emerging concern (CECs). Aadvanced oxidation processes (AOPs) have proved to be effective for removing these compounds from drinking water, yet there are some constrains to treat wastewater and digestate mainly due to their complex matrix. In this study, the feasibility to remove different CECs from digestate using O3 and O3/H2O2 was assessed, and the general effect of the matrix in the oxidation was explained. While the lab-scale ozonation provided an ozone dose of 1.49 mg O3/mg DOC in 5 h treatment, almost all the compounds were removed at a lower ozone dose of maximum 0.48 mg O3/mg DOC; only ibuprofen required a higher dose of 1.1 mg O3/mg DOC to be oxidized. The digestate matrix slowed down the kinetic ozonation rate to approximately 1% compared to the removal rate in demineralized water. The combined treatment (O3/H2O2) showed the additional contribution of H2O2 by decreasing the ozone demand by 59-75% for all the compounds. The acute toxicity of the digestate, measured by the inhibition of Vibrio fisheries luminescence, decreased by 18.1% during 5 h ozonation, and by 34% during 5 h O3/H2O2 treatment. Despite the high ozone consumption, the ozone dose (mg O3/mg DOC) required to remove all CECs from digestate supernatant was in the range or lower than what has been reported for other (waste-)water matrix, implying that ozonation can be considered as a post-AD treatment to produce cleaner stream for agricultural purposes.
Collapse
Affiliation(s)
- Nazanin Moradi
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Carlos Lopez Vazquez
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands
| | - Hector Garcia Hernandez
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands
| | - Damir Brdjanovic
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Francisco Rubio Rincón
- Water Supply, Sanitation and Environmental Engineering Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands
| |
Collapse
|