1
|
Das C, Martín C, Habermann S, Walker HR, Iqbal J, Elies J, Jones HS, Reina G, Ruiz A. Co-Loading of Black Phosphorus Nanoflakes and Doxorubicin in Lysolipid Temperature-Sensitive Liposomes for Combination Therapy in Prostate Cancer. Int J Mol Sci 2023; 25:115. [PMID: 38203286 PMCID: PMC10779057 DOI: 10.3390/ijms25010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Black phosphorus (BP) is one of the most promising nanomaterials for cancer therapy. This 2D material is biocompatible and has strong photocatalytic activity, making it a powerful photosensitiser for combined NIR photothermal and photodynamic therapies. However, the fast degradation of BP in oxic conditions (including biological environments) still limits its use in cancer therapy. This work proposes a facile strategy to produce stable and highly concentrated BP suspensions using lysolipid temperature-sensitive liposomes (LTSLs). This approach also allows for co-encapsulating BP nanoflakes and doxorubicin, a potent chemotherapeutic drug. Finally, we demonstrate that our BP/doxorubicin formulation shows per se high antiproliferative action against an in vitro prostate cancer model and that the anticancer activity can be enhanced through NIR irradiance.
Collapse
Affiliation(s)
- Chandrima Das
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| | - Cristina Martín
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
| | - Sebastian Habermann
- Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Harriet Rose Walker
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| | - Javed Iqbal
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| | - Jacobo Elies
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| | - Huw Simon Jones
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| | - Giacomo Reina
- Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Amalia Ruiz
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK; (C.D.); (H.R.W.); (J.I.); (J.E.); (H.S.J.)
| |
Collapse
|
2
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|