1
|
Jiang Z, Fang W, Jiang Y, Hu Y, Dong Y, Li P, Shi L. Arsenic mobilization by Bathyarchaeia in subsurface sediments at the Jianghan Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138002. [PMID: 40117769 DOI: 10.1016/j.jhazmat.2025.138002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
As one of the most abundant microorganisms on Earth, Bathyarchaeia with diverse abilities to degrade complex organic carbon play a vital role in the global carbon cycle. However, the role of Bathyarchaeia in arsenic (As) metabolism and their contribution to As mobilization in aquifers remain unclear. In this study, we recovered 15 Bathyarchaeota metagenome-assembled genomes (MAGs) from metagenomes of borehole sediments in the Jianghan Plain (JHP), China. Together with 374 representative Bathyarchaeia MAGs from public databases, six As metabolism genes i.e. arrA, arsR, arsA, arsB, arsC (Trx) and arsM were identified, accounting for 4.4, 47.6, 20.3, 38.3, 37.5 and 49.4 % of total Bathyarchaeia MAGs, respectively. Heterologous expression of multiple arsC and arsM genes of Bathyarchaeia MAGs obtained from JHP sediments validated their abilities for As(V) reduction and As(III) methylation at environmentally relevant As concentration. These results indicate that in addition to providing bioavailable carbon sources for other microbial functional populations, Bathyarchaeia directly participate in As mobilization in the JHP aquifer via As(V) reduction and As(III) methylation. The diversified distribution of arsC and arsM in the class Bathyarchaeia suggests that Bathyarchaeia may contribute to As cycling in other As-rich environments, such as hot spring, saline lakes, marine hydrothermal sediments and soils.
Collapse
Affiliation(s)
- Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Wenjie Fang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Ping Li
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan, Hubei 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, Hubei 430074, China; State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan, Hubei 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, Hubei 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Zhang J, Shi K, Zhao Y, Wu C, Zhou S. Molecular characterization and environmental response of dissolved organic matter in reserve quiescent groundwater wells of the North China plain: Insights from spectroscopy and mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 986:179798. [PMID: 40449357 DOI: 10.1016/j.scitotenv.2025.179798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/09/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Dissolved organic matter (DOM) plays a critical role in aquatic ecosystems. However, the characteristics of DOM in groundwater source wells and interactions with environmental factors remain poorly understood. This study investigated the spectral properties, molecular composition, and environmental drivers across vertical groundwater gradients in Shijiazhuang using spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS), multivariate statistics and molecular network analysis. Three components were identified: two humic-like substances (C1, C3) and one protein-like component (C2) Humic-like substances exhibited significant vertical stratification, with bottom groundwater DOM showing higher humification and autochthonous characteristics. Multivariate statistical analysis indicated that NO3--N and dissolved oxygen (DO) were keystone factors influencing the vertical differences of DOM. Surface-layer DOM was driven by dissolved total phosphorus (DTP), pH, DO and NO3--N, while the bottom layer was jointly regulated by pH, total phosphorus (TP), total nitrogen (TN) and NO3--N. DOM components correlated significantly with fluorescence index (FI), humification index (HIX), chemical oxygen demand (CODMn) and dissolved total nitrogen (DTN). FT-ICRMS analysis revealed that DOM molecular composition was dominated by CHO (38.71 %-52.07 %) and CHON (22.30 %-34.44 %) compounds, with lignin-like (LIG) (60.91 %-80.56 %) serving as the core molecular formulae. Redundancy analysis (RDA) identified that TN, DO, and NH4+-N were key drivers regulating the DOM molecules distribution. Furthermore, molecular network analysis demonstrated that LIG molecular formulae played a crucial role in the network, significantly enhancing the chemical stability of the DOM molecular network. These findings elucidate DOM dynamics in groundwater systems at a molecular scale, providing critical insights for resource protection and risk management.
Collapse
Affiliation(s)
- Jiafeng Zhang
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenbin Wu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Li H, Huo L, Zhang R, Gu X, Chen G, Yuan Y, Tan W, Hui K, Jiang Y. Effect of soil-groundwater system on migration and transformation of organochlorine pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117564. [PMID: 39700769 DOI: 10.1016/j.ecoenv.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world. However, in recent years, the deterioration of the ecological environment of soil-groundwater caused by industrial, domestic, and agricultural pollution sources has continued to threaten human health and ecological security. Among them, organochlorine pesticides (OCPs), as typical organic pollutants, cause very serious pollution of soil and groundwater environment. However, most studies on the pollution of OCPs have focused on the aboveground or surface water environment, and little consideration has been given to the pollution and hazards of OCPs to the deep soil and groundwater environment, especially the effects of different environmental factors on the transport and transformation of OCPs in soil-groundwater. Moreover, in addition to the influence of a single factor on it, the interactions that arise between different factors cannot be ignored. This paper focuses on two major sources of OCPs in soil and groundwater environments, compiles and summarizes the effects of environmental factors such as pH, microbial communities and enzyme activities on the transport and transformation of OCPs in soil and groundwater systems, discusses the synergistic effects of individual environmental factors and others, and comprehensively analyses the effects of synergistic effects of various environmental factors on the transport and transformation of OCPs. In the context of ecological civilization construction, it provides the scientific basis and theoretical foundation for the prevention and treatment of OCPs-contaminated soil and groundwater, and puts forward new ideas and suggestions for the research and development of green, eco-friendly remediation and treatment technologies for OCPs-contaminated sites.
Collapse
Affiliation(s)
- Haohao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, Zurich 8092, Switzerland
| | - Rui Zhang
- Guizhou Shale Gas Exploration and Development Co., Zunyi, Guizhou 563499, China
| | - Xuefan Gu
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Gang Chen
- Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Xi'an Key Laboratory of Low-carbon Utilization for High-carbon Resources, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Xing S, Zhang C, Guo H, Sheng Y, Liu X. Hydrologic changes induced by groundwater abstraction lead to arsenic mobilization in shallow aquifers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136133. [PMID: 39413516 DOI: 10.1016/j.jhazmat.2024.136133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Intensive groundwater abstraction leads to hydrologic changes of groundwater. Nevertheless, the effects of hydrologic change on groundwater arsenic (As) mobilization remain controversial. Here, we investigated fluctuations in water levels and their effects on As mobilization in the shallow aquifer of the Hetao Basin. Results showed that large groundwater level fluctuations and high horizontal hydraulic gradients occurred in irrigation seasons. In the groundwater near the wetland with higher surface water levels than groundwater levels, biological index values of dissolved organic matter (DOM) ranged from 0.54 to 0.72, and a positive correlation between δ18O values and dissolved organic carbon (DOC) was observed, indicating that groundwater DOM was mainly sourced from surface water. The degradation of allochthone labile DOM drove the reductive dissolution of As-bearing Fe(III) oxides to Fe(II). Both DOC and humification indices of DOM exhibited positive correlations with horizontal hydraulic gradients downstream of the study area, implying that the humified organic matter flushed from aquifer sediments contributed to groundwater DOM. The humified DOM controlled by hydraulic conditions participated in the redox reactions mainly by shuttling electrons to As-bearing Fe(III) oxides. These findings highlight distinct roles of hydrologic changes induced by groundwater abstraction in As mobilization.
Collapse
Affiliation(s)
- Shiping Xing
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chaoran Zhang
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Xingyu Liu
- Institute of Earth Science, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
5
|
Sanchez AA, Haas K, Jackisch C, Hedrich S, Lau MP. Enrichment of dissolved metal(loid)s and microbial organic matter during transit of a historic mine drainage system. WATER RESEARCH 2024; 266:122336. [PMID: 39216129 DOI: 10.1016/j.watres.2024.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Water quality degradation by decommissioned mining sites is an environmental issue recognized globally. In the Ore mountains of Central Europe, a wide array of contaminants is released by abandoned under- and aboveground mining sites threatening the quantity and quality of surface and groundwater resources. Here, we focus on the less-explored internal pollution processes within these mines involving organic carbon and microorganisms in trace metal(loid)s mobilization processes. Over an 18-month period, we conducted hydrological and biogeochemical monitoring at the Reiche Zeche mine, a former lead-zinc-silver mine, in Germany, reaching 230 meters below ground, well below the critical zone. Our results show strong seasonal fluctuations in water availability, concentrations of metal(loid)s, pH, and dissolved organic matter (DOM) components across multiple depths. Excess metal(loid) presence during high flow conditions indicated mobilization behavior deviating from conservative dilution. Our findings reveal strong positive correlations between metal(loid) variability and pH (0.894), and between metal(loid) variability and the DOM fluorescent component C2 (-0.910), a proxy for microbial activity. Accordingly, the microbial processes may significantly contribute to the observed metal(loid) composition and fluxes. By elucidating the intricate roles of hydrological and biogeochemical factors in trace metal(loid) mobilization, our research offers a comprehensive framework for improving mine water management and remediation, potentially informing global environmental policies and sustainable mining practices.
Collapse
Affiliation(s)
- Anita Alexandra Sanchez
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany.
| | - Karl Haas
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Conrad Jackisch
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, Technische Universität Bergakademie Freiberg, Germany
| | - Maximilian P Lau
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany; Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Germany
| |
Collapse
|
6
|
Yang C, Sun R, Cui J, Yao B, Guo Y. Analysis of dissolved organic matter characteristics in pharmaceutical wastewater via spectroscopy combined with Fourier-transform ion cyclotron resonance mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135706. [PMID: 39241358 DOI: 10.1016/j.jhazmat.2024.135706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Studying the changes in organic matter and characteristic pollutants during the treatment of penicillin-containing pharmaceutical wastewater, which can be reflected by changes in dissolved organic matter (DOM), is crucial for improving the effectiveness of wastewater treatment units and systems. Herein, water quality indicators, spectroscopic methods, and Fourier-transform ion cyclotron resonance mass spectrometry were utilized to characterize the general molecular compositions and specific molecular changes in DOM during the treatment of typical penicillin-containing pharmaceutical wastewater, including in each of the influent, physicochemical treatment, biological treatment, oxidation treatment, and effluent stages. The influent exhibited a high organic matter content (concentration of dissolved organic carbon >10,000 mg·L-1), its DOM mainly contained protein- and lignin-like substances composed of CHON and CHONS molecules, and the relative intensity (RI) of penicillin was extremely high (RI = 0.220). Compared with the influent, the abundance of CHON and CHONS molecules detected after physicochemical treatment decreased by 70.3 % and 62.5 %, respectively, and the RI of penicillin decreased by 85.5 %. Biological treatment caused substantial changes in DOM components through oxidation, dealkylation, and denitrification reactions, accounting for 36.8 %, 28.9 %, and 14.8 % of the total identified reactions, respectively. Additionally, lignin-like substances were generated in large quantities, the overall humification level significantly increased, and the RI value increased for the penicillin intermediate, 6-aminopenicillanic acid (6-APA). Oxidation treatment effectively removed phosphorus-containing substances and some lignin-like substances produced by biological treatment; however, it was not effective in removing characteristic pollutants such as 6-APA. Such characteristic substances continued to be present in the effluent, and the DOM mainly contained protein- and humus-like substances, accounting for 30.8 % and 47.3 %, respectively. The study findings reveal the changes in organic matter and characteristic pollutants during the treatment of penicillin-containing wastewater from the perspective of the general molecular composition and specific molecular changes in DOM, providing support for further exploration of wastewater treatment mechanisms and improvements in treatment unit efficiency.
Collapse
Affiliation(s)
- Chenqiang Yang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China
| | - Ruixue Sun
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China
| | - Bo Yao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China
| | - Yankai Guo
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, Hebei, China.
| |
Collapse
|
7
|
Chen H, Zhang S, Wang H, Ma X, Wang M, Yu P, Shi B. Co-selective effect of dissolved organic matter and chlorine on the bacterial community and their antibiotic resistance in biofilm of drinking water distribution pipes. WATER RESEARCH 2024; 268:122664. [PMID: 39490093 DOI: 10.1016/j.watres.2024.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
The proliferation of pathogenic bacteria and antibiotic resistance genes (ARGs) in the biofilm of drinking water distribution pipes poses a serious threat to human health. This work adopted 15 polyethylene (PE) pipes to study the co-selective effect of dissolved organic matter (DOM) and chlorine on the bacterial community and their antibiotic resistance in biofilm. The results indicated that ozone and granular activated carbon (O3-GAC) filtration effectively removed lignins and proteins from DOM, and chlorine disinfection eliminated carbohydrate and unsaturated hydrocarbons, which both contributed to the inhibition of bacterial growth and biofilm formation. After O3-GAC and disinfection treatment, Porphyrobacter, unclassified_d_bacteria, and Sphingopyxis dominated in the biofilm bacterial community. Correspondingly, the bacterial metabolism pathways, including the phosphotransferase system, phenylalanine, tyrosine and tryptophan biosynthesis, ABC transporters, and starch and sucrose metabolism, were downregulated significantly (p < 0.05), compared to the sand filtration treatment. Under such a situation, extracellular polymeric substances (EPS) secretion was inhibited in biofilm after O3-GAC and disinfection treatment, postponing the interaction between EPS protein and pipe surface, preventing bacteria, especially pathogens, from adhering to the pipe surface to form biofilm, and restraining the spread of ARGs. This study revealed the effects of various water filtration and disinfection processes on bacterial growth, metabolism, and biofilm formation on a molecular level, and validated that the O3-GAC filtration followed by chlorine disinfection is an effective and promising pathway to control the microbial risk of drinking water.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Zhang
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu Y, Zhang X, Zheng J, He J, Lü C. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173443. [PMID: 38782281 DOI: 10.1016/j.scitotenv.2024.173443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.
Collapse
Affiliation(s)
- Yangzheng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Xin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China.
| | - Jinli Zheng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Jiang He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China.
| |
Collapse
|
9
|
Gao Z, Zhang R, Zhang Z, Zhao B, Chen D, Kersten M, Guo H. Groundwater irrigation induced variations in DOM fluorescence and arsenic mobility. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135229. [PMID: 39024759 DOI: 10.1016/j.jhazmat.2024.135229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Dissolved organic matter (DOM) plays a predominant role in groundwater arsenic (As) mobility. However, the temporal-spatial variations in DOM fluorescent characteristics and their effects on As mobility induced by groundwater irrigation remain unclear. To address these issues, groundwater from multilevel and irrigation wells in Zones I and II (with low- and high-As groundwater irrigation, respectively) from the Hetao Basin, China, were monitored in both non-irrigation (NIG) and irrigation (IG) seasons. Upon irrigation, the irrigation return increased the relative abundance of protein- and humic-like DOM in shallow groundwater from Zone I with Ca-type groundwater and Zone II with Na-type groundwater irrigation, respectively. The introduced dissolved oxygen by irrigation return decreased As concentrations by 22 % and 6 % on average in shallow groundwater from Zones I and II, respectively. However, the pumping-induced lateral recharge of lower- and higher-As groundwater led to an average 17 % decrease and 38 % increase in As concentrations in deeper groundwater from the two zones, respectively. The increased degradation of protein-like DOM may also contribute to the elevated As concentrations in deep groundwater from Zone II. The study provides insights into the dependence of irrigation-induced variations in DOM fluorescence and As concentrations on geochemicals of irrigation groundwater and aquifer hydrogeological conditions.
Collapse
Affiliation(s)
- Zhipeng Gao
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rongshe Zhang
- Zhejiang Industry Polytechnic College, Shaoxing 312000, China
| | - Zhuo Zhang
- Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China
| | - Bo Zhao
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Dou Chen
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Michael Kersten
- Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099, Germany
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
10
|
Jin C, Li Z, Huang M, Ding X, Chen J, Li B. Mechanisms of cadmium release from manganese-rich sediments driven by exogenous DOM and the role of microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116237. [PMID: 38503104 DOI: 10.1016/j.ecoenv.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response. The results demonstrated that different DOM drive microbial community shifts and enhance microbially mediated Mn oxide (MnO) reduction and Cd release. The amendment of terrestrial- and anthropogenic-derived DOM (FA and SDBS) mainly contributed to enriching Mn-reducing bacteria phylum Proteobacteria, and its abundance increased by 38.16-74.47 % and 56.41-73.98 %, respectively. Meanwhile, microbial-derived DOM (BSA and SA) mainly stimulated the abundances of metal(loid)-resistant bacteria phylum Firmicutes. Accompanied by microbial community structure, diversity, and co-occurrence network shifts, the DOM concentration and oxidation-reduction potential changed, resulting in enhanced Cd mobilization. Importantly, FA stimulated Cd release most remarkably, probably because of the decreased cooperative interactions between bacterial populations, stronger reduction of MnOs, and higher aromaticity and hydrophobicity of the sediment DOM after amendment. This study linked DOM types to functional microbial communities, and explored the potential roles of different DOM types in Cd biotransformation in lake sediments.
Collapse
Affiliation(s)
- Changsheng Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Geography Science, Hunan Normal University, Changsha 410081, PR China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Hunan Normal University, Changsha 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
11
|
Zeng K, Huang X, Dai C, He C, Chen H, Guo J, Xin G. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133086. [PMID: 38035526 DOI: 10.1016/j.jhazmat.2023.133086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.
Collapse
Affiliation(s)
- Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chuanshun Dai
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Guo
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
12
|
Luo M, Wang S, Zhang S, Zhou T, Lu J, Guo S. Ecological role of reed belts in lakeside zone: Impacts on nutrient retention and bacterial community assembly during Hydrilla verticillata decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120489. [PMID: 38402786 DOI: 10.1016/j.jenvman.2024.120489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Reed belts acting as basic nutrient filters are important parts of lake buffer riparian zones. However, little is known about their impacts on nutrient release and bacterial community during plant litter decomposition. In this study, a field experiment was conducted in west-lake Taihu to monitor the changes in nutrients, bacterial enzymatic activities, and bacterial community in plant debris during Hydrilla verticillata (H. verticillata) decomposition in open water (HvC) and reed belts (HvL) area for 126 days. We found that there was lower temperature but higher nutrient concentrations in overlying water in HvL than HvC. Partial least squares path modeling revealed that environmental parameters in overlying water had important impacts on bacterial activities and nutrient release (such as alkaline phosphatase, cellulase, and soluble sugar) and therefore affected dissolved organic matter components in plant debris. According to Illumina sequencing, 46,003 OTUs from 10 dominant phyla were obtained and Shannon index was higher in HvL than HvC at the same sampling time. Neutral community model explained 49% of bacterial community variance and immigration rate by the estimate of dispersal in HvC (Nm: 27,154) and HvL (Nm: 25,765), respectively. Null model showed stochastic factors governed the bacterial community assembly in HvC (66.67%) and HvL (87.28%). TP and pH were key factors affecting the bacterial community structure at the phylum level. More hubs and complex interactions among bacteria were observed in HvL than HvC. Function analysis showed bacterial community had important role in carbon, organic phosphorus, and nitrogen removal but phosphorus-starvation was detected in debris of H. verticillata. This study provides useful information for understanding the changes in nutrients and bacterial community in litter during H. verticillata decomposition and highlights the role of reed belts on retained plant litter to protect lake from pollution.
Collapse
Affiliation(s)
- Min Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shuncai Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Tiantian Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianhui Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|