1
|
Li Z, Li X. Bibliometric analysis and systematic review on the electrokinetic remediation of contaminated soil and sediment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:15. [PMID: 39666177 DOI: 10.1007/s10653-024-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Electrokinetic remediation (EKR) is a proficient, environmentally friendly separation technology for in-situ removal of contaminants in soil/sediment, distinguished for its ease of implementation and minimal prerequisites compared to other remediation technologies. To comprehensively understand the research focus and progress related to EKR of contaminated soil/sediment, a bibliometric analysis was conducted on 1593 publications retrieved from the Web of Science Core Collection (WOSCC) database. This analysis utilized data mining and knowledge discovery techniques through Bibliometrix, VOSviewer, and CiteSpace software. The results revealed a rising trend in annual publication numbers, with China leading in the number of publications. The primary journals in this field included the Journal of Hazardous Materials, Chemosphere, and Separation and Purification Technology. The primary disciplines contributed to this field included "Environmental Sciences", "Engineering, Environmental", "Engineering, Chemical", and "Electrochemistry". Keyword co-occurrence and burst analysis indicated that current EKR-related research mainly focuses on the remediation of soil/sediments contaminated by heavy metals (HMs) and organic pollutants (OPs). Furthermore, the EKR remediation improvement method emerged as the prevailing and future research hotspots and development directions. Future research could integrate numerical simulations and various methodologies to predict and assess the migration of pollutants and the efficiency of remediation efforts. Additionally, these studies could explore the effects of EKR on the physicochemical properties and microbial diversity of soil/sediment to provide a theoretical foundation for applying EKR in soil/sediment remediation.
Collapse
Affiliation(s)
- Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaoguang Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Li Y, Liang H, Wang L, Chen G, Bai Y, Tang T, Gao D. Enhanced bioremediation of organically combined contaminated soil by white rot fungal agent: physiological characteristics and contaminants degradation. ENVIRONMENTAL TECHNOLOGY 2024; 45:6039-6050. [PMID: 38522073 DOI: 10.1080/09593330.2024.2323025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024]
Abstract
Microbial remediation of organically combined contaminated sites is currently facing technical challenges. White rot fungi possess broad-spectrum degradation capabilities, but most of the studies are conducted on polluted water bodies, and few research focus on the degradation of combined organically contaminated soils. This study aimed to investigate the physiological changes in Trametes versicolor to enhance its simultaneous degradation ability towards benzo(a)pyrene (BaP) and TPH. The results demonstrated that Trametes versicolor, when subjected to liquid fermentation, achieved an 88.08% degradation of individual BaP within 7 days. However, under the combined contamination conditions of BaP and TPH, the BaP degradation rate decreased to 69.25%, while the TPH degradation rate was only 16.95%. Furthermore, the degradation rate of BaP exhibited a significant correlation with the extracellular protein concentration and laccase activities. Conversely, the TPH degradation rate exhibited a significant and positive correlation with the intracellular protein concentration. Solid-state fermentation utilizing fungal agents proved to be the most effective method for removing BaP and TPH, yielding degradation rates of 56.16% and 15.73% respectively within 60 days. Overall, Trametes versicolor demonstrated a commendable capability for degrading combined PAHs-TPH pollutants, thereby providing theoretical insights and technical support for the remediation of organically combined contaminated sites.
Collapse
Affiliation(s)
- Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
3
|
Zheng L, Cai X, Tang J, Qin H, Li J. Bioelectrochemical technologies for soil and sediment remediation: Recent advances and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122602. [PMID: 39316876 DOI: 10.1016/j.jenvman.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Soil and sediment serve as the ultimate repositories of pollutants, presenting a significant environmental concern on a global scale. However, there is no effective measure due to the low mobility, high resistance and high cost of contaminated soil or sediment. The bioelectrochemical systems (BESs) combine microbial and electrochemical technology to achieve efficient and rapid degradation of pollutants by enriching electroactive microbial membranes with electrodes. Specifically, BESs offer an ideal solution for in-situ remediation, eliminating the secondary pollution and high energy consumption issues associated with traditional technologies. However, in soil or sediment bioelectrochemical systems (SBESs), further summarization and improvement are required to address the influencing factors during the process of pollutant remediation, given the fragility of complex geographical and natural environments. This paper provides a comprehensive overview and analysis of the removal mechanisms of organic pollutants, heavy metals and emerging contaminants within contaminated soil or sediment, elucidating the influential factors and strategies aimed at enhancing pollutant removal processes within SBESs. The current emerging problems and limitations of microbial electrochemical remediation technology are summarized, and it is suggested that future development should focus on microorganisms, reactors and practical applications.
Collapse
Affiliation(s)
- Linlan Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
4
|
Sun N, Wang T, Qi B, Yu S, Yao Z, Zhu G, Fu Q, Li C. Inhibiting release of phenanthrene from rice-crab coculture sediments to overlying water with rice stalk biochar: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168385. [PMID: 37952670 DOI: 10.1016/j.scitotenv.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Rice crab coculture is a new ecological agriculture model combining rice cultivation and crab farming. Current research related to rice crab coculture only focuses on production theory and technical system establishment, while ignoring the potential ecological risk of Polycyclic aromatic hydrocarbon(PAHs) in rice crab coculture sediment. In this study, rice straw was used to make rice straw biochar to explore the performance and mechanism of inhibiting release of phenanthrene(PHE) from rice-crab coculture sediments to overlying water with rice stalk biochar. The kinetic and isotherm adsorption data were best represented by the Langmuir model and pseudo-second-order model with a maximum adsorption capacity of 53.35 mg/g at 12 h contact time. The results showed that PHE was released from the rice-crab substrate to the overlying water in dissolved and particle forms as a result of bioturbation, and the PHE concentrations in dissolved and particle forms were 20.9 μg/L and 14.22 μg/L, respectively. This leads to secondary ecological risks in rice-crab co-culture systems. This is related to dissolved organic carbon(DOC) carrying the dissolved PHE and total suspended solids(TSS) carrying the particle PHE in the overlying water. Due to its large specific surface area, rice straw biochar is rich in functional groups, providing multiple hydrophobic adsorption sites. After adding rice straw biochar at 0.5 % w/w (dry weight) dose, the removal efficiency of dissolved and particulate PHE in the overlying water were 78.99 % and 42.11 %, respectively. Rice straw biochar is more competitively adsorbed PHE in the overlying water than TSS and DOC. The removal efficiency of PHE from the sediment was 52.75 %. This study confirmed that rice stalk biochar could effectively inhibit PHE migration and release in paddy sediment. It provides an environment- friendly in situ remediation method for the management of PAHs pollution from crab crops in rice fields.
Collapse
Affiliation(s)
- Nan Sun
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Academy of Environmental Sciences Postdoctoral Joint Scientific Research Station, Harbin 150030, China
| | - Tianyi Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bowei Qi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijie Yu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Smart Home Business Group, Midea Group, Wuxi 214000, China
| | - Zhongbao Yao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guanglei Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenyang Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Research Center for Ecological Agriculture and Soil-Water Environment Restoration, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Li F, Li J, Tong M, Xi K, Guo S. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. CHEMOSPHERE 2023; 341:139845. [PMID: 37634583 DOI: 10.1016/j.chemosphere.2023.139845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Electro-bioremediation is a promising technology for remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the resulting electrokinetic effects and electrochemical reactions may inevitably cause changes in soil factors and microorganism, thereby reducing the remediation efficiency. To avoid negative effect of electric field on soil and microbes and maximize microbial degradability, it is necessary to select a suitable electric field. In this study, artificial benzo [a]pyrene (BaP)-contaminated soil was selected as the object of remediation. Changes in soil factors and microorganisms were investigated under the voltage of 1.0, 2.0, and 2.5 V cm-1 using chemical analysis, real-time PCR, and high-throughput sequencing. The results revealed noticeable changes in soil factors (pH, moisture, electrical conductivity [EC], and BaP concentration) and microbes (PAHs ring-hydroxylating dioxygenase [PAHs-RHDα] gene and bacterial community) after the application of electric field. The degree of change was related to the electric field strength, with a suitable strength being more conducive to BaP removal. At 70 d, the highest mean extent of BaP removal and PAHs-RHDα gene copies were observed in EK2.0 + BIO, reaching 3.37 and 109.62 times those in BIO, respectively, indicating that the voltage of 2.0 V cm-1 was the most suitable for soil microbial growth and metabolism. Changes in soil factors caused by electric fields can affect microbial activity and community composition. Redundancy analysis revealed that soil pH and moisture had the most significant effects on microbial community composition (P < 0.05). The purpose of this study was to determine the appropriate electric field that could be used for electro-bioremediation of PAH-contaminated soil by evaluating the effects of electric fields on soil factors and microbial communities. This study also provides a reference for efficiency enhancement and successful application of electro-bioremediation of soil contaminated with PAHs.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|