1
|
Lin P, Li J, Gao Y, Zhao Y, Li Y, Zhang H, Ma G. Label-Free Quantification of Nanoplastic-Cell Membrane Interaction by Single Cell Deformation Plasmonic Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9610-9619. [PMID: 40349329 DOI: 10.1021/acs.est.5c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Nanoplastics are a growing environmental concern due to their potential to disrupt cellular functions. Understanding how these particles interact with cell membranes is crucial for assessing their biological effects. In this study, we present a label-free, quantitative method─Single Cell Deformation Plasmonic Imaging (SCDPI)─to measure real-time membrane interaction dynamics at the single-cell level. By examining both fixed and live cells, we characterized the binding behaviors of nanoplastics with varying sizes, surface chemistries, and materials. Our findings show that nanoplastic binding induces cell membrane deformation ranging from a few to tens of nanometers, depending on nanoplastic type and concentration (0-250 μg/mL), influencing membrane-surface interactions. This work provides new mechanistic insights into nanoplastic-cell interactions, demonstrating the potential of SCDPI as a powerful tool for evaluating the cellular impacts of environmental pollutants.
Collapse
Affiliation(s)
- Peng Lin
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yushi Gao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yachong Zhao
- Jinan Chengquan Biotechnology Co., Ltd., Jinan 250100, China
| | - Yuhang Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Huachun Zhang
- Jinan Chengquan Biotechnology Co., Ltd., Jinan 250100, China
| | - Guangzhong Ma
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Chen L, Guo J, Zhou Y, Yu WQ, Jin YS, Fu YZ, Yuan R. Efficient CdIn 2S 4/MgIn 2S 4 heterojunction for ultrasensitive detection of lung cancer marker neuron-specific enolase. Talanta 2024; 280:126669. [PMID: 39153254 DOI: 10.1016/j.talanta.2024.126669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
In this work, a photoelectrochemical (PEC) immunosensor was constructed for the ultrasensitive detection of lung cancer marker neuron-specific enolase (NSE) based on a microflower-like heterojunction of cadmium indium sulfide and magnesium indium sulfide (CdIn2S4/MgIn2S4, CMIS) as photoactive material. Specifically, the well-matched energy level structure and narrow energy level gradients between CdIn2S4 and MgIn2S4 could accelerate the separation of electron-hole (e--h+) pairs in the CMIS heterojunction to enhance the photocurrent of CMIS, which was increased 5.5 and 80 times compared with that of single CdIn2S4 and MgIn2S4, respectively. Meanwhile, using CMIS as photoactive material, increasing the biocompatibility by dropping Pt NPs on the surface of CMIS to immobilize the antibody through Pt-N bond. Fe3O4-Ab2, acting as the quencher, competitively consumes electron donors and absorbs light, leading to photocurrent quenching. With the increasing of quencher, the photocurrent decreased. Hence, the developed "signal-off" PEC immunosensor realized the trace detection of NSE within the range from 1.0 fg/mL to 10 ng/mL with a low detection limit of 0.34 fg/mL. This strategy provided a new perspective for establishing ternary metal sulfide heterojunction to construct PEC immunosensor for sensitive detection of disease biomarkers.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wan-Qing Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yu-Shuang Jin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying-Zi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Nagarajan V, Reseeka N, Chandiramouli R. Hex-star phosphorene nanosheets as sequencing material for DNA/RNA strands - A first-principles investigation. J Mol Graph Model 2024; 132:108845. [PMID: 39142259 DOI: 10.1016/j.jmgm.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this study, we utilised hex-star phosphorene as the main detecting material to identify the nucleobases. Nucleobases, being crucial carriers of hereditary information are identified through specific hydrogen bonding and steric interactions such as adenine pairing with thymine (or) uracil and guanine pairing with cytosine. The stable hex-star phosphorene possesses negative formation energy of -5.194 eV. The hex-star phosphorene exhibits a semiconductor nature with an energy band gap of 1.658 eV, which is deployed as the adsorbing substrate for nucleobases. Based on the Mulliken charge analysis, adsorption energy, relative band gap variation, and the detection efficiency of hex-star phosphorene towards nucleobases are examined. The outcome confirms the physisorption of nucleobases on hex-star phosphorene and strongly supports that hex-star phosphorene can be used as sequencing material for DNA and RNA.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India
| | - N Reseeka
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India.
| |
Collapse
|
4
|
Stuart DD, Van Zant W, Valiulis S, Malinick AS, Hanson V, Cheng Q. Trends in surface plasmon resonance biosensing: materials, methods, and machine learning. Anal Bioanal Chem 2024; 416:5221-5232. [PMID: 38839686 DOI: 10.1007/s00216-024-05367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Surface plasmon resonance (SPR) proves to be one of the most effective methods of label-free detection and has been integral for the study of biomolecular interactions and the development of biosensors. This trend delves into the latest SPR research and progress built upon the Kretschmann configuration, a pivotal platform, and highlights three key developments that have enhanced the capabilities of the technique. We will first cover a range of explorations of novel plasmonic materials that have shaped SPR performance. Innovative signal transduction and collection, which leverages traditional materials and emerging alternatives, will then be discussed. Finally, the evolving landscape of data analysis, including the integration of machine learning algorithms to navigate complex SPR datasets, will be reviewed. We will also discuss the implementation of these improvements that have enabled new biosensing functions. These advancements not only pave the way for enhanced biosensing in general but also open new avenues for the technique to play a more significant role in research concerning human health.
Collapse
Affiliation(s)
- Daniel D Stuart
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Westley Van Zant
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Santino Valiulis
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | | | - Victor Hanson
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Del Rosso T, Shtepliuk I, Zaman Q, Baldeón Huanqui LG, Tahir, Freire FL, Nascimento Barbosa A, Maia da Costa MEH, Aucélio RQ, Miranda Andrades JR, Mendoza CD, Khan R, Margheri G. On the Strong Binding Affinity of Gold-Graphene Heterostructures with Heavy Metal Ions in Water: A Theoretical and Experimental Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39269254 PMCID: PMC11448048 DOI: 10.1021/acs.langmuir.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Minimum energy configurations in 2D material-based heterostructures can enable interactions with external chemical species that are not observable for their monolithic counterparts. Density functional theory (DFT) calculations reveal that the binding energy of divalent toxic metal ions of Cd, Pb, and Hg on graphene-gold heterointerfaces is negative, in contrast to the positive value associated with free-standing graphene. The theoretical predictions are confirmed experimentally by Surface Plasmon Resonance (SPR) spectroscopy, where a strong binding affinity is measured for all the heavy metal ions in water. The results indicate the formation of a film of heavy metal ions on the graphene-gold (Gr/Au) heterointerfaces, where the adsorption of the ions follows a Langmuir isotherm model. The highest thermodynamic affinity constant K = 3.1 × 107 L mol-1 is observed for Hg2+@Gr/Au heterostructures, compared to 1.1 × 107 L mol-1 and 8.5 × 106 L mol-1 for Pb2+@Gr/Au and Cd2+@Gr/Au, respectively. In the case of Hg2+ ions, it was observed a sensitivity of about 0.01°/ppb and a detection limit of 0.7 ppb (∼3 nmol L-1). The combined X-ray photoelectron spectroscopy (XPS) and SPR analysis suggests a permanent interaction of all of the HMIs with the Gr/Au heterointerfaces. The correlation between the theoretical and experimental results indicates that the electron transfer from the graphene-gold heterostructures to the heavy metal ions is the key for correct interpretation of the enhanced sensitivity of the SPR sensors in water.
Collapse
Affiliation(s)
- Tommaso Del Rosso
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology - IFM, Linköping University, S-58183 Linköping, Sweden
| | - Quaid Zaman
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
- Department of Physics, Main Sowari Bazzar, University of Buner, 17290 Buner, Pakistan
| | - Luis Gonzalo Baldeón Huanqui
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Tahir
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Fernando Lazaro Freire
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Andre Nascimento Barbosa
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | | | - Ricardo Q Aucélio
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900 Rio de Janeiro, Brazil
| | - Jarol Ramon Miranda Andrades
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900 Rio de Janeiro, Brazil
| | - Cesar D Mendoza
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
- Departamento de Engenharia Elétrica, Universidade do Estado do Rio de Janeiro, UERJ, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro 20550-900, RJ Brazil
| | - Rajwali Khan
- National Water and Energy Center, United Arab Emirates University, P.O Box 17551, Sheik Khalifa Bin Zayed Street 1, Al-Ain, United Arab Emirates
| | - Giancarlo Margheri
- Istituto dei Sistemi Complessi Sezione di Sesto Fiorentino (I.S.C - CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Liu Y, Sang S, Zhao D, Ge Y, Xue J, Duan Q, Guo X. Novel flexible magnetoelastic biosensor based on PDMS/FeSiB/QD composite film for the detection of African swine fever virus P72 protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39041882 DOI: 10.1039/d4ay01057d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic disease caused by the African swine fever virus (ASFV). The continuous spread of ASFV affects the safety of the global meat supply; therefore, the establishment of sensitive and specific detection methods for ASFV has become an important hot spot in food safety. Herein, we developed a flexible magnetoelastic (ME) biosensor based on PDMS/FeSiB/QDs composite films for the detection of ASFV P72 protein. Based on the high luminescence performance of CsPbBr3 quantum dots and the excellent magnetoelastic effect of FeSiB, flexible ME biosensors convert stress signals generated by antibody-antigen-specific binding into optical and electromagnetic signals. The nanostructures covalently linked by quantum dots and PDMS provide biomodification sites for ASFV P72 antibodies, simplifying the functionalization modification process compared to the case of conventional biosensors. The deformation of the PDMS film is amplified, and the conversion of surface stress signals to electrical signals is enhanced by exposing the biosensor to a uniform magnetic field. The experimental results proved that the flexible ME biosensor has a wide linear range of 10 ng mL-1-100 μg mL-1, and the detection limit is as low as 0.079 ng mL-1. Moreover, the flexible ME biosensor also shows good stability, sensitivity and specificity, confirming the potential for early disease screening.
Collapse
Affiliation(s)
- Yuanhang Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dong Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yang Ge
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030024, China
| | - Juanjuan Xue
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qianqian Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030024, China
| |
Collapse
|
7
|
Taha BA, Ahmed NM, Talreja RK, Haider AJ, Al Mashhadany Y, Al-Jubouri Q, Huddin AB, Mokhtar MHH, Rustagi S, Kaushik A, Chaudhary V, Arsad N. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth Biol 2024; 13:1600-1620. [PMID: 38842483 DOI: 10.1021/acssynbio.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance (AMR) poses a critical global One Health concern, ensuing from unintentional and continuous exposure to antibiotics, as well as challenges in accurate contagion diagnostics. Addressing AMR requires a strategic approach that emphasizes early stage prevention through screening in clinical, environmental, farming, and livestock settings to identify nonvulnerable antimicrobial agents and the associated genes. Conventional AMR diagnostics, like antibiotic susceptibility testing, possess drawbacks, including high costs, time-consuming processes, and significant manpower requirements, underscoring the need for intelligent, prompt, and on-site diagnostic techniques. Nanoenabled artificial intelligence (AI)-supported smart optical biosensors present a potential solution by facilitating rapid point-of-care AMR detection with real-time, sensitive, and portable capabilities. This Review comprehensively explores various types of optical nanobiosensors, such as surface plasmon resonance sensors, whispering-gallery mode sensors, optical coherence tomography, interference reflection imaging sensors, surface-enhanced Raman spectroscopy, fluorescence spectroscopy, microring resonance sensors, and optical tweezer biosensors, for AMR diagnostics. By harnessing the unique advantages of these nanoenabled smart biosensors, a revolutionary paradigm shift in AMR diagnostics can be achieved, characterized by rapid results, high sensitivity, portability, and integration with Internet-of-Things (IoT) technologies. Moreover, nanoenabled optical biosensors enable personalized monitoring and on-site detection, significantly reducing turnaround time and eliminating the human resources needed for sample preservation and transportation. Their potential for holistic environmental surveillance further enhances monitoring capabilities in diverse settings, leading to improved modern-age healthcare practices and more effective management of antimicrobial treatments. Embracing these advanced diagnostic tools promises to bolster global healthcare capacity to combat AMR and safeguard One Health.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Naser M Ahmed
- Department of Laser and Optoelectronics Engineering, Dijlah University College, 00964 Baghdad, Iraq
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, 00964 Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, 00964 Baghdad, Iraq
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand 248007, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Malaysia
| |
Collapse
|
8
|
Lu G, Zong B, Tao T, Yang Y, Li Q, Mao S. High-Performance Ni 3(HHTP) 2 Film-Based Flexible Field-Effect Transistor Gas Sensors. ACS Sens 2024; 9:1916-1926. [PMID: 38501291 DOI: 10.1021/acssensors.3c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Conductive metal-organic frameworks (MOFs) have received increasing attention in recent years and present high application potential as sensing elements in electronic sensors. In this study, flexible field-effect transistor (FET) sensors based on conductive MOF, i.e., Ni3(HHTP)2, have been constructed. This Ni3(HHTP)2 sensor has high sensitivity (detection limit of 56 ppb) as well as superior selectivity for NO2 detection at room temperature, which is demonstrated by accurate gas detection in a mixed gas atmosphere. Moreover, by employing six flexible substrates, i.e., polyimide (PI), tape (PET), facemask, paper cup, tablecloth, and take-out bag (textile), we successfully demonstrate the universality of the flexible sensor construction with conductive MOF as sensing film on various substrates. This study of conductive MOF-based flexible electronic sensors offers a new opportunity for a wide range of sensing applications with wearable and portable electronic devices.
Collapse
Affiliation(s)
- Guirong Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tian Tao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuehong Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Zhao Z, Yin H, Xiao J, Cui M, Huang R, Su R. Efficient Sequential Detection of Two Antibiotics Using a Fiber-Optic Surface Plasmon Resonance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2126. [PMID: 38610339 PMCID: PMC11013968 DOI: 10.3390/s24072126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Huiting Yin
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| |
Collapse
|
10
|
Liu H, Fu Y, Yang R, Guo J, Guo J. Surface plasmonic biosensors: principles, designs and applications. Analyst 2023; 148:6146-6160. [PMID: 37921208 DOI: 10.1039/d3an01241g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Recently, surface plasmon resonance (SPR) biosensors have been widely used in environmental monitoring, food contamination detection and diagnosing medical conditions due to their superior sensitivity, label-free detection and rapid analysis speed. This paper briefly elaborates on the development history of SPR technology and introduces SPR signal sensing principles. A summary of recent applications of SPR sensors in different fields is highlighted, including their figures of merit and limitations. Finally, the personal perspectives and future development trends about sensor preparation and design are discussed in detail, which may be critical for improving the performance of SPR sensors.
Collapse
Affiliation(s)
- Hao Liu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Rongzhi Yang
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|