1
|
Xia L, Wang J, Chen M, Li G, Wang W, An T. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136554. [PMID: 39566460 DOI: 10.1016/j.jhazmat.2024.136554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaping Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhang Y, Ma Y, Zhang R, Du X, Yuan B, Zhang Z, Lin Z, Wang J, Sun Y. Development of a 3-step sequential extraction method to investigate the fraction and affecting factors of 21 antibiotics in soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133842. [PMID: 38432088 DOI: 10.1016/j.jhazmat.2024.133842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic exist in various states after entering agricultural soil through the application of manure, including the aqueous state (I), which can be directly absorbed by plants, and the auxiliary organic extraction state (III), which is closely associated with the pseudo-permanence of antibiotics. However, effective analytical methods for extracting and affecting factors on fractions of different antibiotic states remain unclear. In this study, KCl, acetonitrile/Na2EDTA-McIlvaine buffer, and acetonitrile/water were successively used to extract states I, II, and III of 21 antibiotics in soil, and the recovery efficiency met the quantitative requirements. Random forest classification and variance partitioning analysis revealed that dissolved organic matter, pH, and organic matter were important factors affecting the recovery efficiency of antibiotic in states I, II, and III, respectively. Additionally, 65-day spiked soil experiments combined with Mantel test analysis suggested that pH, organic acids, heavy metals, and noncrystalline minerals differentially affected antibiotic type and state. Importantly, a structural equation model indicated that organic acids play a crucial role in the fraction of antibiotic states. Overall, this study reveals the factors influencing the fraction of different antibiotic states in soil, which is helpful for accurately assessing their ecological risk.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanwen Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xian Du
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sinochem Environment Holdings Co., Ltd., Beijing 100160, China
| | - Bo Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zishuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoye Lin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|