1
|
Jing F, Xu X, Lu W, Jin M, He X, Yu R. Design and Characterization of Concave Hollow Double-Layer Nanospheres for Efficient Cd(II) and Pb(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10323-10331. [PMID: 40219979 DOI: 10.1021/acs.langmuir.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Polymer-based adsorbents have emerged as promising candidates for heavy-metal remediation due to their tailorable porosity and multifunctional surfaces, yet challenges persist in achieving both structural precision and adsorption efficiency. Here, we report a concave hollow double-layer nanosphere (CHDN) synthesized through a facile self-assembly strategy engineered for selective capture of Cd(II) and Pb(II) ions. Comprehensive characterization via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and thermogravimetric analysis (TGA) confirmed the hierarchical architecture with abundant amino/hydroxyl moieties. The CHDN demonstrated exceptional adsorption capacities of 198.40 mg/g for Cd(II) and 60.34 mg/g for Pb(II), outperforming conventional adsorbents. Isotherm analysis revealed Cd(II) adsorption followed the Sips model (R2 > 0.99), while Pb(II) adhered to the Langmuir model, suggesting monolayer and heterogeneous binding mechanisms, respectively. Kinetic studies further corroborated chemisorption dominance through pseudo-second-order fitting for Cd(II) and Elovich compatibility for Pb(II). We propose a synergistic mechanism involving ligand complexation and ion exchange, facilitated by the dual functionality of surface groups and structural advantages of the concave architecture. This work provides a blueprint for designing spatially engineered polymers for environmental remediation.
Collapse
Affiliation(s)
- Fangfen Jing
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Xin Xu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Weiwei Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Mingzhu Jin
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Xinyang He
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Rongtai Yu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| |
Collapse
|
2
|
Hou S, Du J, Ling H, Quan S, Bao J, Yi C. Synergistic Removal of Cr(VI) Utilizing Oxalated-Modified Zero-Valent Iron: Enhanced Electron Selectivity and Dynamic Fe(II) Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:669. [PMID: 40358286 PMCID: PMC12074083 DOI: 10.3390/nano15090669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025]
Abstract
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeC2O4/nFe0 heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe0 core to the surface via the FeC2O4-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFeoxa with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe0-based materials for sustainable remediation of metal oxyanion-contaminated water.
Collapse
Affiliation(s)
- Song Hou
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (S.H.); (H.L.); (S.Q.)
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan 430072, China
| | - Jiangkun Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Haibo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (S.H.); (H.L.); (S.Q.)
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan 430072, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Sen Quan
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (S.H.); (H.L.); (S.Q.)
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan 430072, China
| | - Jianguo Bao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (S.H.); (H.L.); (S.Q.)
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Wuhan 430072, China
| |
Collapse
|
3
|
Wu H, Li S, He Y, Zhou B, Zeng G, Huang Y, Sun D. Phytotoxicity of Zero-Valent Iron-Based Nanomaterials in Mung Beans: Seed Germination and Seedling Growth Experiments. TOXICS 2025; 13:250. [PMID: 40278566 PMCID: PMC12031036 DOI: 10.3390/toxics13040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
The extensive utilization of nano-zero-valent iron (nZVI) and its engineered derivatives has prompted significant environmental concerns, particularly regarding their phytotoxicological impacts, which remain inadequately characterized. This investigation systematically evaluated the phytotoxicological responses induced by nZVI, Chlorella vulgaris biochar (BC), and Chlorella vulgaris biochar loaded with nano-zero-valent iron (BC/nZVI) on mung bean seed germination and subsequent seedling development. The experimental data revealed that both the nZVI and BC/nZVI treatments significantly suppressed the germination indices, including germination rate, radicle and plumule elongation, and biomass accumulation, with nZVI demonstrating the most pronounced inhibitory effects. During the vegetative growth phases, nZVI exposure substantially impaired plant morphogenesis, manifested through reduced vertical growth, diminished fresh and dry biomass production, and the onset of premature foliar chlorosis, necrosis, desiccation, and, ultimately, plant mortality. A comparative analysis indicated that the BC/nZVI composites exhibited less severe photosynthetic inhibition relative to pristine nZVI. Biochemical assays demonstrated that nZVI exposure elicited the substantial upregulation in antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), concomitant with abnormal ferric ion accumulation in root tissues. Notably, BC/nZVI composites demonstrated the partial mitigation of these physiological disturbances. These empirical findings underscore that excessive iron bioavailability from nZVI induces substantial phytotoxicological stress, while BC matrix incorporation provides the partial amelioration of these adverse effects on seedling ontogeny.
Collapse
Affiliation(s)
- Huan Wu
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China; (H.W.); (S.L.); (B.Z.); (G.Z.)
| | - Sha Li
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China; (H.W.); (S.L.); (B.Z.); (G.Z.)
| | - Yu He
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Bin Zhou
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China; (H.W.); (S.L.); (B.Z.); (G.Z.)
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China; (H.W.); (S.L.); (B.Z.); (G.Z.)
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongging 400074, China
| | - Yuanyuan Huang
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongging 400074, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Hibakhadeeja MP, Thakur A, Mathews AA, Ray Dutta J, Ganesan R. Sequestration of Cr(VI) onto polyethyleneimine-derivatized cellulose and its effect on the enzymatic degradation and microbiome viability. Int J Biol Macromol 2025; 297:139915. [PMID: 39824396 DOI: 10.1016/j.ijbiomac.2025.139915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The extremely hazardous nature of Cr(VI) necessitates its sequestration in a sustainable and effective manner. Cellulose-derived materials, known for their eco-friendly properties, are widely employed in environmental remediation. To improve its adsorption capabilities for heavy metals, cellulose is often derivatized with moieties like amine, thiol, carboxylic acid, etc. The current work compares the efficacy of cellulose derivatized with polyethyleneimine-a nitrogen-rich biocompatible polymer-obtained via two synthetic approaches, resulting in adsorbents termed PEI-MAAC and PEI-DAC. PEI-MAAC represents cellulose grafted with methacrylic acid followed by PEI immobilization, while PEI-DAC involves PEI immobilization on dialdehyde cellulose. The adsorption of Cr(VI) over the two categories of adsorbents is initially optimized for key parameters, including pH, adsorbent dosage and metal concentration. Further analysis of adsorption isotherms and kinetics revealed the superior efficacy of PEI-DAC. To evaluate the environmental impact of these Cr(VI)-adsorbed cellulose-derived materials, their enzymatic degradation behavior and effects on the soil microbiome have been explored. It has been found that the Cr(VI) adsorption retards the enzymatic degradation rate of these materials, while no significant adverse effects on the soil microbiome have been observed. The study highlights the potential of cellulose-derived materials as sustainable candidates for heavy metal sequestration and environmental remediation.
Collapse
Affiliation(s)
- M P Hibakhadeeja
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Anindita Thakur
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Amita Aanne Mathews
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India.
| |
Collapse
|
5
|
Feng J, Yu Y, Huang S, Zhu N, Mojiri A, Ge D. Tannic acid as a green chemical for the removal of various heavy metals: A critical review of recent developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124390. [PMID: 39908615 DOI: 10.1016/j.jenvman.2025.124390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Heavy metals are persistent, bioaccumulative, and toxic pollutants that greatly challenge the environment. Pursuing green and efficient methods to remove these contaminants from wastewater has become a key focus in environmental research. Tannic acid (TA), a natural plant-derived secondary metabolite, has demonstrated exceptional potential for heavy metal removal. This review provides a comprehensive analysis of TA-based materials, focusing on their performance, influencing factors, underlying mechanisms, thermodynamic models, and regeneration in the removal process. Enhancing the adsorption capacity of TA-based materials for targeted heavy metals remains a priority, requiring further modifications and optimizations. Expanding the operational range of pH and temperature and minimizing interference from coexisting substances are also crucial for practical applications. Additionally, kinetic and adsorption models offer valuable insights into removal mechanisms while providing predictions and guidance for real-world implementations. By offering an in-depth overview, this review serves as a critical resource for advancing the development of sustainable and effective TA-based adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Junkun Feng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yalin Yu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Shouqiang Huang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Dongdong Ge
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Tran TV, Jalil AA, Nguyen DTC, Hassan NS, Alhassan M, Bahari MB. Highly enhanced chloramphenicol adsorption performance of MIL-53-NH 2(Al)-derived porous carbons modified with tannic acid. ENVIRONMENTAL RESEARCH 2024; 259:119447. [PMID: 38908660 DOI: 10.1016/j.envres.2024.119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The worldwide demand for antibiotics has experienced a notable surge, propelled by the repercussions of the COVID-19 pandemic and advancements in the global healthcare sector. A prominent challenge confronting humanity is the unregulated release of antibiotic-laden wastewater into the environment, posing significant threats to public health. The adoption of affordable carbon-based adsorbents emerges as a promising strategy for mitigating the contamination of antibiotic wastewater. Here, we report the synthesis of novel porous carbons (MPC) through a direct pyrolysis of MIL-53-NH2(Al) and tannic acid (TANA) under N2 atmosphere at 800 °C for 4 h. The effect of TANA amount ratios (0%-20%, wt wt-1) on porous carbon structure and adsorption performance was investigated. Results showed that TANA modification resulted in decreased surface area (1,600 m2 g-1-949 m2 g-1) and pore volume (2.3 cm3 g-1-1.7 cm3 g-1), but supplied hydroxyl functional groups. Adsorption kinetic, intraparticle diffusion, and isotherm were examined, indicating the best fit of Elovich and Langmuir models. 10%-TANA-MPC obtained an ultrahigh adsorption capacity of 564.4 mg g-1, which was approximately 2.1 times higher than that of unmodified porous carbon. 10%-TANA-MPC could be easily recycled up to 5 times, and after reuse, this adsorbent still remained highly stable in morphology and surface area. The contribution of H bonding, pore-filling, electrostatic and π-π interactions to chloramphenicol adsorption was clarified. It is recommended that TANA-modified MIL-53-NH2(Al)-derived porous carbons act as a potential adsorbent for removal of pollutants effectively.
Collapse
Affiliation(s)
- Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - N S Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M Alhassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - M B Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
7
|
Liu J, Huang X, Yi Z. Complexing agent-assisted Cr(VI) removal in a continuous fixed-bed system with nanoscale Fe 0/NaA molecular sieve membrane supported on nickel foam. CHEMOSPHERE 2024; 364:143003. [PMID: 39097113 DOI: 10.1016/j.chemosphere.2024.143003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Complexing agents (CAs) can be used for the removal of Cr(VI) via nanoscale Fe0 (nZVI) reduction in cost-effective manner. However, nZVI is prone to aggregation and passivation, and some conventional CAs are toxic and difficult to biodegrade, potentially causing secondary pollution. Therefore, selecting an environmentally friendly CA for assisting in the removal of Cr(VI) via supported nZVI is imperative. Herein, NaA molecular sieve membrane-supported nZVI (nZVI/NaA-NF) was prepared via the secondary growth and liquid-phase reduction method using nickel foam (NF) as the carrier. The physicochemical characteristics of nZVI/NaA-NF before and after reaction were analysed via SEM, EDS, and XPS. A CA-improved nZVI/NaA-NF was used for the effective removal of Cr(VI) in a continuous fixed-bed system. Furthermore, the influences of various experimental factors including the CA type, CA concentration, solution pH, space velocity, and inlet Cr(VI) concentration on Cr(VI) removal were systematically investigated. The results demonstrated that nZVI particles were homogeneously immobilized on the NaA molecular sieve membrane/NF for fresh nZVI/NaA-NF, and tetrasodium iminidisuccinate (IDS-4Na) inhibited the aggregation of Cr(III)/Fe(III) (hydr)oxide precipitates during the reaction. IDS-4Na demonstrated excellent promotive effect on Cr(VI) removal via nZVI/NaA-NF. The breakthrough time for Cr(VI) in the addition of IDS-4Na was considerably longer than that of nZVI/NaA-NF alone. The breakthrough concentration of Cr(VI) only reached 1.1% and 9.9% of the inlet concentration at 220 and 240 min, with an IDS-4Na concentration of 4 mM, a pH of 2.5, and a space velocity of 0.265 min-1. The Bohart-Adams model was appropriate to predict the initial part of Cr(VI) breakthrough curves in the nZVI/NaA-NF fixed bed. The saturated concentration (N0) increased with an increase in inlet Cr(VI) concentration. The Yoon-Nelson model afforded good fitting results for all breakthrough curves of Cr(VI). The k' value increased with an increase in space velocity, and the τ value decreased.
Collapse
Affiliation(s)
- Jian Liu
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang, 421008, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, 421008, China.
| | - Xueren Huang
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China
| | - Zhengji Yi
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang, 421008, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, 421008, China
| |
Collapse
|
8
|
Ghalavand R, Ghafuri H, Ardeshiri HH. Preparation of nanodiamond anchored on copper tannic acid as a heterogenous catalyst for synthesis of 1,4-benzodiazepines derivatives. Sci Rep 2024; 14:8655. [PMID: 38622185 PMCID: PMC11018864 DOI: 10.1038/s41598-024-58563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
In this research, a new and eco-friendly heterogeneous catalyst (ND@Tannicacid-Cu) was synthesized based on nanodiamond and copper tannic acid via esterification process. The as-prepared catalyst was characterized by Fourier transforms infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) methods. The catalytic efficacy of the intended catalyst was examined by one-step three-component reaction of 1,4-benzodiazepine derivatives from a mixture of ortho-phenylenediamine, aromatic aldehydes, and dimedone under mild conditions. In all instances, corresponding 2,4-benzodiazepines derivatives were synthesized with high efficiency, short reaction time, straightforward work up procedure, no requirement for column-chromatography, and cost-effective catalyst. The heterogeneous catalyst was easily recycled using fillers, and it can be reused for eight cycles without significantly diminishing its performance.
Collapse
Affiliation(s)
- Reza Ghalavand
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Hadi Hassani Ardeshiri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
9
|
Yuan Z, Peng A, Chu Z, Zhang X, Huang H, Mi Y, Xia D, Wu X, Ye Z, Tao Y, Yan X. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171107. [PMID: 38387560 DOI: 10.1016/j.scitotenv.2024.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Zhe Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Aifang Peng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhaopeng Chu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xinyi Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - He Huang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Yuanzhu Mi
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Dongsheng Xia
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan 430200, China
| | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434103, PR China
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| | - Yufang Tao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| | - Xuemin Yan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
10
|
Chen Y, Lei C, Zhao YG, Ye ML, Yang K. Orientation Growth of N-Doped and Iron-Based Metal-Organic Framework and Its Application for Removal of Cr(VI) in Wastewater. Molecules 2024; 29:1007. [PMID: 38474519 PMCID: PMC10934015 DOI: 10.3390/molecules29051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
A series of NH2-functionalized nano-sized magnetic metal-organic frameworks (MOFs) were prepared in this study for Cr(VI) removal from wastewater. It was observed that not only the morphological, i.e., orientation growth of N-doped and iron-based metal-organic frameworks, but also the adsorption of magnetic MOFs is largely related to the used amount of ammonium hydroxide in preparation. For example, with increasing amounts of ammonium hydroxide used in preparation, the morphology of magnetic MOFs changed from spherical to cube and triangular cone. Moreover, the maximum adsorption capacity of spherical-magnetic MOFs, cubic-magnetic MOFs and triangular cone-magnetic MOFs could be up to 204.08 mg/g, 232.56 mg/g and 270.27 mg/g, respectively. Under optimal conditions, the adsorption process of magnetic MOFs for Cr(VI) was consistent with the pseudo-second-order rate equation (R2 = 1) and Langmuir isotherm model (R2 > 0.99). Therefore, magnetic MOFs developed in this work offered a viable option for the removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Yan Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| | - Chao Lei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; (Y.C.); (K.Y.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Wang W, Wang H, Luoyang Y, Zhang G, Gao X, Li J, Li X, He M. Nitric Acid-Treated Blue Coke-Based Activated Carbon's Structural Characteristics and Its Application in Hexavalent Chromium-Containing Wastewater Treatment. Molecules 2023; 28:7986. [PMID: 38138476 PMCID: PMC10745564 DOI: 10.3390/molecules28247986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This study primarily focused on the efficient transformation of low-priced blue coke powder into a high-capacity adsorbent and aimed to address the pollution issue of hexavalent chromium (Cr (VI))-laden wastewater and to facilitate the effective utilization of blue coke powder. A two-step method was utilized to fabricate a blue coke-based nitric acid-modified material (LCN), and the impact of nitric acid modification on the material's structure and its efficacy in treating Cr (VI)-contaminated wastewater was evaluated. Our experimental results illustrated that, under identical conditions, LCN exhibited superior performance for Cr (VI) treatment compared to the method employing only potassium hydroxide (LCK). The specific surface area and pore volume of LCN were 1.39 and 1.36 times greater than those of LCK, respectively. Further chemical composition analysis revealed that the functional group structure on the LCN surface was more conducive to Cr (VI) adsorption. The highest amount of Cr (VI) that LCN could bind was measured at 181.962 mg/g at 318 K. This was mostly due to chemisorption, which is dominated by redox reactions. The Cr (VI) removal process by LCN was identified to be a spontaneous, exothermic, and entropy-increasing process. Several tests on recycling and reuse showed that LCN is a stable and effective chromium-containing wastewater adsorbent, showing that it could be used in many situations.
Collapse
Affiliation(s)
- Wencheng Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Hua Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin 719000, China
| | - Yunxuan Luoyang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Guotao Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xuchun Gao
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
- Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin University, Yulin 719000, China
| | - Jian Li
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xia Li
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Miao He
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| |
Collapse
|