1
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Wang BY, Li B, Xu HY. Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review. CHEMOSPHERE 2024; 362:142597. [PMID: 38889873 DOI: 10.1016/j.chemosphere.2024.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In the past decades, the amount of biomass waste has continuously increased in human living environments, and it has attracted more and more attention. Biomass is regarded as the most high-quality and cost-effective precursor material for the preparation carbon of adsorbents and catalysts. The application of biomass carbon has extensively explored. The efficient application of biomass carbon in organic wastewater purification were reviewed. With briefly introducing biomass types, the latest progress of Machine learning in guiding the preparation and application of biomass carbon was emphasized. The key factors in constructing efficient biomass carbon for adsorption and catalytic applications were discussed. Based on the functional groups, rich pore structure and active site of biomass carbon, it exhibits high efficiency in water purification performance in the fields of adsorption and catalysis. In addition, out of a firm belief in the enormous potential of biomass carbon, the remaining challenges and future research directions were discussed.
Collapse
Affiliation(s)
- Bao-Ying Wang
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Bo Li
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Huan-Yan Xu
- Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China.
| |
Collapse
|
3
|
Gao B, Zhang J, Liu J, Ayati A, Sillanpää M. Excess sludge-based biochar loaded with manganese enhances catalytic ozonation efficiency for landfill leachate treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123591. [PMID: 38367696 DOI: 10.1016/j.envpol.2024.123591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
This study developed an efficient and stable landfill leachate treatment process, which was based on the combination of biochar catalytic ozonation and activated sludge technology for intensive treatment of landfill leachate, aiming to achieve the standard discharge of leachate. The focus is to investigate the effect of manganese loading on the physicochemical properties of biochar and the mechanism of its catalytic ozonation. It was found that more surface functional groups (CO, Mn-O, etc.) and defects (ID/IG = 1.27) were exposed via the change of original carbon structure by loading Mn, which is conducive to the generation of lattice oxygen. Meanwhile, generating different valence states of Mn metal can improve the redox properties and electron migration rate, and encourage the production of reactive oxygen species (ROS) during the reaction process and enhance the catalytic efficiency. The synergistic action of microorganisms, especially denitrifying bacteria, was found to play a key role in the degradation of nitrogenous pollutants during the activated sludge process. The concentration of NH+4-N was reduced from the initial 1087.03 ± 9.56 mg/L to 9.05 ± 1.91 mg/L, while COD was reduced from 2290 ± 14.14 mg/L to 86.5 ± 2.12 mg/L, with corresponding removal rates of 99.17% and 99.20%, respectively. This method offers high efficiency and stability, achieving discharge standards for leachate (GB16889-2008). The synergy between Mn-loaded biochar and microorganisms in the activated sludge is key to effective treatment. This study offers a new approach to solving the challenge of waste leachate treatment.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jingyao Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ali Ayati
- EnergyLab, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait; School of Technology, Woxsen University, Hyderabad, Telangana, India
| |
Collapse
|