1
|
Lin J, Li G, Hu Y, Zhong Q. Host-guest mediated recognition and rapid extraction of Fusarium mycotoxins in cereals by nickel ferrite magnetic calix[4]arene-derived covalent organic framework fabricated in room-temperature. Food Chem 2025; 464:141887. [PMID: 39522376 DOI: 10.1016/j.foodchem.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Fusarium mycotoxins are toxic secondary fungal metabolites and widely distributed in cereals. Herein, a nickel ferrite magnetic calix[4]arene-derived covalent organic framework (NiFe2O4@CX4-COF) was meticulously designed and synthesized using a room-temperature method for the enrichment of mycotoxins. The CX4-COF exhibited a porous crystalline network with an eclipsed AA-stacking configuration. The ingenious integration of NiFe2O4, supramolecular calix[4]arene and COF contributed to host-guest mediated recognition, size-selectivity and high adsorption capacity, rapidly reaching adsorption equilibrium within only 3 min. Simulation calculations revealed that the host-guest interaction, size effect and abundant binding sites facilitated synergistically recognize and capture mycotoxins. NiFe2O4@CX4-COF has successfully applied for simultaneous extraction and analysis of mycotoxins in cereals, achieving negligible matrix effects (-14% to 13%), high sensitivity (LODs of 0.003-0.014 μg/L) and satisfactory recoveries (74.4%-116%). This work provides a prospective platform for constructing tailored macrocycle-based COFs under mild conditions for precise recognition and accurate analysis of trace hazardous substances in food.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
2
|
Hu W, Xia L, Hu Y, Li G. Calixarene-Based Magnetic Nanosponge Decorating AgNPs for Rapid and Selective Surface-Enhanced Raman Scattering Analysis in Complex Samples. Anal Chem 2025; 97:1347-1356. [PMID: 39772455 DOI: 10.1021/acs.analchem.4c05745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Rapid and accurate analysis of trace targets in complex samples remains an enormous challenge. Herein, the calix[x]arene-based magnetic cross-linked polymer decorating AgNPs, abbreviated Fe3O4-CXA-DAB@AgNPs nanosponge, was developed for fast surface-enhanced Raman scattering (SERS) analysis in complex samples. The Fe3O4-CXA-DAB@AgNPs nanosponge surface was constructed by high-density CXA units with special cavity size and structure, which could selectively recognize and enrich targets to the sensing surface by the host-guest effect and molecule interactions. The Fe3O4-C4A-DAB@AgNPs showed significant SERS enhancement to choline chloride (ChCl) and succinylcholine chloride (SCC) with an enhancement factor (EF) of 2.9 × 107 and 6.3 × 106, respectively. The Fe3O4-C6A-DAB@AgNPs exhibited high SERS activity to thiabendazole with an EF of 7.6 × 106. Introducing recognition-enrichment-separation with SERS sensing, the nanosponge could achieve rapid enrichment sensing of targets within 6-8 min. Also, the Fe3O4-CXA-DAB@AgNPs nanosponge exhibited good stability for rapid detection with relative standard deviations less than 6.3% for intra-batch (n = 25) and 6.8% for inter-batch (n = 15). Benefiting from these merits, the Fe3O4-C4A-DAB@AgNPs was employed for fast SERS analysis of ChCl and SCC in real samples. The limits of detection were 0.62 μg/L for ChCl and 2.0 μg/L for SCC. ChCl was found in feed sample with recoveries of 85.3-108%, and SCC was found in serum samples with recoveries of 85.7-111%. The methods provided a significant reference for the selective analysis of targets by regulating the calix[x]arenes cavity size to satisfy different molecules and rapid quantification strategy by integrating sample pretreatment technology with sensing detection all-in-one.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Su LH, Qian HL, Xu ST, Yang C, Yan XP. Calixarene incorporated molecular imprinting on covalent organic framework for supramolecular recognition and specific extraction of citrinin. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136150. [PMID: 39423644 DOI: 10.1016/j.jhazmat.2024.136150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Specific recognition and selective extraction of mycotoxin in environmental and food matrixes is significant to guarantee public health. Covalent organic frameworks (COFs) are promising adsorbents with tailorable functionality, but their low binding affinity and poor selectivity hamper their wide application for selective extraction of trace mycotoxin from complex matrix. Herein, we report calixarene incorporated molecular imprinting on COF to prepare molecularly imprinted calix[4]arene-containing COF (MICOF-CX4) for supramolecular recognition and specific adsorption of citrinin. Calixarene with host-guest chemistry was used as a functional monomer, while amine units with different topologies and function groups were selected to regulate MICOF-CX4 to match with citrinin. The complementary shape and supramolecular interactions of MICOF-CX4 gave highly selective recognition for citrinin. Moreover, MICOF-CX4 with vast accessible surface and plentiful imprinting sites exhibited faster adsorption kinetics and 4-fold higher adsorption capacity for citrinin adsorption than no-imprinted COF-CX4. Combination of MICOF-CX4 based solid-phase extraction with high-performance liquid chromatography-mass spectrometry allowed interference free determination of trace citrinin in real samples with a low detection limit of 0.03 ng mL-1, good precision of 4.5 % and quantitative recovery of 88.2 %-101.4 %. The cooperative functions of calixarene and molecular imprinting make COF promising adsorbent for specific adsorption of trace targets in complex matrixes.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Lin J, Ouyang X, Hu Y, Li G, Zhong Q. β-Cyclodextrin/calix[4]arene hybrid porous organic polymer membrane for synergistic extraction of fluorescent whitening agents migrating from food contact materials. J Chromatogr A 2024; 1734:465298. [PMID: 39216285 DOI: 10.1016/j.chroma.2024.465298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Acurate and sensitive determination of hazards from food contact materials is important to monitor food safety. It is necessary to excavate efficient adsorbent for simultaneous recognition and adsorption of food hazards of trace level for sample preparation. In this work, β-cyclodextrin and calix[4]arene were employed as hybrid functional monomers to prepare macrocyclic porous organic polymer (β-CD-CX4 POP). It was proved that the supramolecular cavities of β-CD-CX4 POP could form inclusion complexes with fluorescent whitening agents (FWAs) through host-guest recognition, which greatly improved the adsorption performance. The hydrophobic cavities of β-cyclodextrin and calix[4]arene of β-CD-CX4 POP exhibited synergistic effect for simultaneous recognition of FWAs. The high-throughput enrichment of FWAs was realized by β-CD-CX4 POP membranes coupled with a multiple-channel syringe pump. Based on membrane-based solid-phase extraction combined with UHPLC-MS/MS, a sensitive analytical method was established to determine six FWAs. The LODs was in range of 3-50 ng/L with the linear range of 0.02-100 μg/L. The developed method was used to quantify FWAs in bread wrapper and bread, and the spiked recoveries ranged from 78.1%-119% with RSD of 2.3%-9.7%. This work indicated that β-CD-CX4 POP was promising for the simultaneous recognition and adsorption of FWAs migrating from food contact materials.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoyan Ouyang
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
6
|
Gong J, Chen Y, A W, Zhang X, Ma J, Xie Z, Li P, Huang A, Zhang S, Liao Q. Multiple-component covalent organic frameworks for simultaneous extraction and determination of multitarget pollutants in sea foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134563. [PMID: 38735186 DOI: 10.1016/j.jhazmat.2024.134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.
Collapse
Affiliation(s)
- Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province, 510623, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518106, China
| | - Pei Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Aihua Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
7
|
Wei X, Zhang Z, Li G. Preparation of MIL-101(Cr)-NH 2@TAPB-DVA-COF based membrane solid-phase extraction for efficient enrichment and sensitive determination of trace aromatic disinfection by-products in juice drinks. Talanta 2024; 273:125901. [PMID: 38503122 DOI: 10.1016/j.talanta.2024.125901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Aromatic disinfection by-products (DBPs) have garnered considerable interest in recent years for their potential carcinogenicity. However, efficient separation and enrichment of DBPs in complex samples is a challenge due to the extremely low content of aromatic DBPs and the complexity of sample matrices. In this study, a MIL-101(Cr)-NH2@TAPB-DVA-COF hybrid material was prepared as the enrichment medium of membrane solid-phase extraction (M-SPE) to efficiently determine trace emerging aromatic DBPs. This medium exhibited excellent enrichment capacity and selectivity for aromatic DBPs because of the strong hydrogen bonding, π-π stacking and hydrophobic interactions. An efficient analytical method for five aromatic DBPs in juice drinks was successfully established by use of this hybrid material as the enrichment medium for M-SPE in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS). The limits of detection of the established method were from 0.50 to 3.00 ng/L. Moreover, the method had been successfully used in real juice drinks to determine trace five aromatic DBPs with the spiked recoveries ranging from 84.1% to 125%. The method possessed high analytical sensitivity and accuracy for these five aromatic DBPs in juice drinks with the aid of the efficient M-SPE technology proposed.
Collapse
Affiliation(s)
- Xueyun Wei
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Li N, Zheng J, Yu LD, Tong YJ, Gong X, Hou Y, Chen G, Xu J, Zhu F, Ouyang G. Green, mildly synthesized bismuth-based MOF for extraction of polar glucocorticoids in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132477. [PMID: 37716268 DOI: 10.1016/j.jhazmat.2023.132477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
The complex sample matrix and low environmental concentration make it challenging to effectively determine the polar glucocorticoids. In particular, a green, economical, and environmentally friendly method is urgently needed, since a large amount of extraction solvents, samples, and extraction materials have been commonly used to improve the sensitivity of the reported methods. In this study, a green and robust phenol and bismuth-based MOF of SU101 was mildly synthesized and fabricated as a brand new solid-phase microextraction (SPME) fiber. Only tiny amounts of SU101 and desorption solvents were employed to realize the high-efficiency enrichments of glucocorticoids from water samples. The detection performance of proposed SU101 fiber towards glucocorticoids was much superior to the single-component and multi-component commercial fibers. It indicated that SU101 fiber could be an excellent candidate for the enrichments of polar pharmaceuticals. After it was coupled with the instrument of high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), the linear range of 5-10000 ng L-1 with detection limits low to 0.070-1.5 ng L-1 and satisfactory recoveries were achieved by the developed method. Benefiting from the environmental friendliness of SU101 and the less-solvent consumption of SPME technique, this work presented a green and economical strategy for determinations of trace glucocorticoids.
Collapse
Affiliation(s)
- Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinying Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
9
|
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, Shentu X. Recent Advances in Non-Targeted Screening of Compounds in Plastic-Based/Paper-Based Food Contact Materials. Foods 2023; 12:4135. [PMID: 38002192 PMCID: PMC10670899 DOI: 10.3390/foods12224135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ensuring the safety of food contact materials has become a pressing concern in recent times. However, detecting hazardous compounds in such materials can be a complex task, and traditional screening methods may not be sufficient. Non-targeted screening technologies can provide comprehensive information on all detectable compounds, thereby supporting the identification, detection, and risk assessment of food contact materials. Nonetheless, the non-targeted screening of food contact materials remains a challenging issue. This paper presents a detailed review of non-targeted screening technologies relying on high-resolution mass spectrometry for plastic-based and paper-based food contact materials over the past five years. Methods of extracting, separating, concentrating, and enriching compounds, as well as migration experiments related to non-targeted screening, are examined in detail. Furthermore, instruments and devices of high-resolution mass spectrometry used in non-targeted screening technologies for food contact materials are discussed and summarized. The research findings aim to provide a theoretical basis and practical reference for the risk management of food contact materials and the development of relevant regulations and standards.
Collapse
Affiliation(s)
- Ya Chen
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China;
| | - Haizhi Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| |
Collapse
|