1
|
Yu MF, Chen L, Liu G, Liu W, Yang Y, Ma L. Metagenomic deciphers the mobility and bacterial hosts of antibiotic resistance genes under antibiotics and heavy metals co-selection pressures in constructed wetlands. ENVIRONMENTAL RESEARCH 2025; 269:120921. [PMID: 39848523 DOI: 10.1016/j.envres.2025.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Both antibiotics and heavy metals exert significant selection pressures on antibiotic-resistance genes (ARGs). This study aimed to investigate the co-selection effects of doxycycline (DC) and cadmium (Cd) on ARGs in constructed wetlands (CWs). The results demonstrated that under antibiotic and heavy metal co-selection pressures, single high concentration DC/Cd or double high, relative abundances of metagenomics assembled genomes all reached 55.1%; meanwhile, the average ratio of ARG-containing contigs located on chromosomes was 61.8% (ranging from 50.4% to 70.6%) suggesting a more stable inheritance of ARGs. Antibiotic and heavy metal co-selection in single high concentration DC/Cd or double high groups stimulate the enrichment of ARG host bacteria, which exhibited complex multiple-resistant patterns accompanied by a host-specific pattern. Additionally, the potential transfer abilities of ARGs mediated by plasmids and integrative and conjugative elements (ICEs) were enhanced under single high-concentration DC/Cd or double high stresses. Together, antibiotic and heavy metal co-selection pressures increased occurrence frequencies of ARGs, MGEs, and their combinations and altered structural communities of ARG host bacteria, increasing the risk of the spread of ARGs. This study was helpful in understanding the dissemination of ARGs and simultaneously preventing the spread of heavy metal-resistant bacteria and ARGs under antibiotic and heavy metal co-selection in small- and micro-wetlands.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Luwen Chen
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Guihua Liu
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuyi Yang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | - Lin Ma
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
2
|
Wang Y, Zhang Q, Li H, Teng Y, Wang H. Metagenomic analysis reveals the effects of potassium ferrate and steel slag on fate of ARGs in anaerobic sludge digestion system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123981. [PMID: 39754807 DOI: 10.1016/j.jenvman.2024.123981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Waste activated sludge (WAS) pose a potential risk for the spread of antibiotic resistance genes (ARGs). This study estimated the effect of sludge on antibiotic resistance genes (ARGs) in anaerobic sludge digestion process. Metagenomic analysis revealed anaerobic sludge with potassium ferrate (PF) and the modified PF loaded steel slag (MPF-SS) brought an increase of ARGs during digestion process. PF was found to effectively reduce most of the high-risk ARGs (i.e., acrB and mexW). Furthermore, network and correlation analysis among ARGs and genera verified that PF significantly increased the potential ARGs hosts. Mechanistic analysis revealed that PF induced oxidative stress behavior of anaerobic digestion microorganisms, and observably upregulated the relative genes about SOS response-related. These findings provide insights into the mechanism underlining PF for ARGs fate and its risk during anaerobic sludge digestion, which could offer practical guidance on the sustainable management of WAS.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Yajie Teng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
3
|
Huang M, Zhao L, Wang Z, Sun X, Shang Q, Li Y, Li M, Geng H, Hu S, Yang Y. Effect of plant species on wastewater treatment performance of a subsurface vertical-flow constructed wetland with step-feeding at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122546. [PMID: 39299120 DOI: 10.1016/j.jenvman.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To improve the treatment performance of constructed wetlands under low-temperature conditions, this study investigated the effects of plant species on wastewater treatment performance at low temperature and the associated microbiological characteristics in a subsurface vertical-flow constructed wetland (VFCW) with step-feeding. The results showed that the redox microenvironment in the VFCW filter with step-feeding could be restored and optimized by planting appropriate species that can tolerate low temperature, ensuring a high nitrification performance for the system. Correspondingly, the abundance and activity of three functional microbes (namely nitrifiers, denitrifiers, and anammox bacteria) increased to different degrees in the system, eventually ensuring ideal nitrogen removal by the VFCW. Compared with the VFCW planted with Phragmites australis and Acorus gramineus, the operation performance of the VFCW planted with Iris wilsonii could be recovered at low temperature, and its chemical oxygen demand, total phosphorus, total nitrogen, and ammonium nitrate removal rates could respectively reach 95.7%, 99.2%, 93.0%, and 94.4%, respectively. Moreover, nitrogen removal in the system relied on the nitrification/denitrification and partial denitrification - anaerobic ammonium oxidation processes. Nitrosomonas, Nitrospira, Thauera, and Candidatus Brocadia were the four dominant bacterial genera in the filter layer.
Collapse
Affiliation(s)
- Menglu Huang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Zhen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Ximing Sun
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, China.
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Siyu Hu
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Deng WK, He JL, Deng YH, Chen JY, Wu YB, Liao XD, Xing SC. Biosafety assessment of laying hens fed different treatments of black soldier flies (Hermetia illucens) under doxycycline stress. Poult Sci 2024; 103:103965. [PMID: 38941787 PMCID: PMC11261150 DOI: 10.1016/j.psj.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
The black soldier fly (BSF, Hermetia illucens) is a resource insect that can utilize livestock and poultry feces. However, BSFs may also increase the risk of transmission of antibiotic resistance genes (AGRs) that are widespread in livestock and poultry farm environments. Therefore, we aimed to evaluate the biosecurity risks of different BSF treatments in the laying chicken food chain using the "chicken manure-BSF-laying hens" model. Our results indicated that different BSF treatments significantly affected antibiotic residue, ARGs, MGEs, bacterial antibiotic resistance, and bacterial microbial community composition in the food chain of laying hens fed BSFs. These risks can be effectively reduced through starvation treatment and high-temperature grinding treatment. Comprehensive risk assessment analysis revealed that starvation combined with high-temperature milling (Group H) had the greatest effect.
Collapse
Affiliation(s)
- Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jun-Liang He
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yi-Heng Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yin-Bao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
5
|
Sun J, Zhang D, Peng S, Yang X, Hua Q, Wang W, Wang Y, Lin X. Critical insights into the Hormesis of antibiotic resistome in saline soil: Implications from salinity regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134616. [PMID: 38754232 DOI: 10.1016/j.jhazmat.2024.134616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.
Collapse
Affiliation(s)
- Jianbin Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Dan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Xiaoqian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China; College of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
6
|
Mu X, Zhang S, Lu J, Huang Y, Ji J. Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:133740. [PMID: 38569335 DOI: 10.1016/j.jhazmat.2024.133740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.
Collapse
Affiliation(s)
- Xiaoying Mu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianhui Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianghao Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Zhang L, Yan C, Wen C. Vertical distribution characteristics and transport paths of antibiotic resistance genes in constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133555. [PMID: 38262322 DOI: 10.1016/j.jhazmat.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Although the migration and diffusion of antibiotic resistance genes (ARGs) in soil-plant systems have attracted much attention, the migration and diffusion characteristics between constructed wetlands and soil-plant systems differ greatly. Therefore, it is necessary to conduct research on vertical transmission and diffusion of ARGs in constructed wetlands. The vertical distribution and transmission of ARGs in constructed wetlands were explored via metagenomic analysis. The results showed that the proportion of multidrug ARGs was the largest, ranging from 24.2% to 47.5%. The shared characteristics of ARGs were similar to those of bacteria, and there were fewer unique ARGs and microbial species in mesophyll tissue. Sourcetracker analysis revealed that ARGs transfer between plants and atmosphere was bidirectional, but the diffusion of ARGs to atmosphere through plants was relatively weak. ARGs were mainly transmitted to atmosphere/surrounding environment through substrate and influent, and the contributions of substrate to ARGs in atmosphere/surrounding environment were 59.2% and 78.6%, respectively. ARGs involved in foliar attachment mainly originated from peripheral inputs. ARGs showed nonspecific selection for the host at phylum, class and order levels. These findings suggest that more attention should be given to the potential risks of ARGs in constructed wetlands, to formulate effective control and management strategies.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Materials Sciences and Engineering, Xinxiang Engineering Research Center for Wastewater Treatment Energy Saving and Emission Reduction, Henan Institute of Technology, Xinxiang 453003, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|