1
|
Li Z, Xue L, Jiang G, Gao C. Oil recovery and heat transfer performance of polyurethane sponges coated with 3D carbon nano networks. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137045. [PMID: 39778482 DOI: 10.1016/j.jhazmat.2024.137045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m2·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes. Deviations from Newton's law of cooling were observed, with n values varying from 1.070 to 1.690.
Collapse
Affiliation(s)
- Zheng Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lixin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China; Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, 325024, China; International Innovation Center for New Materials, Cangnan, Wenzhou, 325900, China.
| | - Guojun Jiang
- Zhijiang College, Zhejiang University of Technology, Shaoxing 312000, China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Guo Y, Zhang J, Wang S, Li X, Miao Y, Zhou J, Liu Z. Hydrophobic Ti 3C 2T x/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation. Polymers (Basel) 2025; 17:273. [PMID: 39940476 PMCID: PMC11820163 DOI: 10.3390/polym17030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
To address the pollution issues of industrial oily wastewater and catering industry wastewater, a series of Ti3C2Tx/TEMPO oxidized cellulose nanofibers composite aerogels with varying Ti3C2Tx content were successfully prepared using liquid nitrogen non-directional and directional freezing methods, with Ti3C2Tx and TEMPO oxidized cellulose nanofibers (TOCNF) as the main raw materials. The prepared samples were then hydrophobically modified using methyltrichlorosilane (MTCS) via chemical vapor deposition (CVD). The results showed that the directional Ti3C2Tx/TOCNF composite aerogel had the most orderly SEM morphology. The hydrophobic Ti3C2Tx/TOCNF composite aerogels exhibited efficient adsorption separation capabilities, with an adsorption capacity ranging from 21.5 to 78.2 times their own mass. Notably, the oil absorption performance was optimal when the mass fraction of Ti3C2Tx was 33.3%. After five adsorption cycles, the adsorption capacity of M5C10 (with a mass ratio of Ti3C2Tx to TOCNF of 5:10) only decreased by around 11%. M5C10 exhibits highly efficient oil absorption performance, which is of considerable significance for the research on oil-water separation treatment of industrial wastewater, domestic wastewater, and sewage from the catering industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhenbo Liu
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Y.G.); (S.W.); (X.L.); (Y.M.); (J.Z.)
| |
Collapse
|
3
|
Chen X, Yang M, An L, He J, Lai K, Wang Y. A solar-driven nanocellulose Janus aerogel with excellent floating stability and dual functions of oil-water separation and photocatalytic degradation of organic pollutants. Int J Biol Macromol 2024; 278:134698. [PMID: 39147337 DOI: 10.1016/j.ijbiomac.2024.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Effective and practical cleanup of viscous crude oil spills is extremely important in real harsh marine environments. Herein, we designed a solar-driven, nanocellulose-based Janus aerogel (Janus-A) with excellent floating stability and dual function of oil-water separation and degradation of aqueous organic pollutants. Janus-A, with its amphiprotic nature, was prepared through polypyrrole (PPy) deposition, freeze-drying, octyltrichlorosilane (OTS) impregnation, TiO2 spraying on the bottom surface, and UV irradiation treatment. The photothermal conversion effect of PPy coating raised the surface temperature of aerogel to 75.8 °C within 6 min under one simulated solar irradiation, which greatly reduced the viscosity of the crude oil and increased the absorption capacity of the aerogel to 36.7 g/g. Benefiting from the balance between the buoyancy generated by the hydrophobic part and water absorption of the hydrophilic part, Janus-A showed excellent floating stability under simulated winds and waves. In addition, Janus-A exhibited high degradation efficiency for organic pollutants in water owing to the synergistic photocatalytic properties of TiO2 and PPy. These excellent performances make Janus-A ideal for integrated water-oil separation and water remediation.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Water and Environment, Chang'an University, China
| | - Mingyan Yang
- School of Water and Environment, Chang'an University, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, China.
| | - Linyu An
- School of Water and Environment, Chang'an University, China
| | - Jing He
- School of Water and Environment, Chang'an University, China
| | - Kunrong Lai
- School of Water and Environment, Chang'an University, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, China
| | - Yangyang Wang
- School of Water and Environment, Chang'an University, China
| |
Collapse
|
4
|
Lu J, Feng Q, Wang J, Li J, Tan S, Xu Z. Efficient solar-driven crude oil cleanup via graphene/cellulose aerogel with radial and centrosymmetric design. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135418. [PMID: 39098201 DOI: 10.1016/j.jhazmat.2024.135418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Frequent oil spills pose significant threats to ecosystems; therefore, strict requirements are needed for prompt remediation and reclamation of spilled oil. Influenced by the structure of coniferous trees and their water transport, this experiment used cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and methyltrimethoxysilane (MTMS) to prepare radially centrosymmetric aerogels. By utilizing the in-situ polycondensation reaction of MTMS, CNF, and PVA were connected, and the hydrophobicity and mechanical properties of the aerogel were greatly enhanced. Furthermore, the introduction of graphene oxide (GO), enshrouded within the cross-linked network, engenders heightened photo-thermal effects. The resultant composite aerogel exhibits expeditious oil absorption under solar irradiation and radial layered channel architecture, significantly curtailing the crude oil absorption timeframe (achieving a maximum absorption capacity of 51.7 g/g). Moreover, it demonstrates superior performance in rapidly and repeatedly adsorbing highly viscous crude oil, surpassing existing literature. Notably, continuous absorption of high-viscosity crude oil is achieved by integrating the composite aerogel with a peristaltic pump. This study offers a novel approach to the absorption and retrieval of high-viscosity crude oil, broadening the potential application horizons of CNF-based aerogels within environmental remediation.
Collapse
Affiliation(s)
- Jiarui Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinze Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiatian Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sicong Tan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Chen Z, Wang B, Qi J, Liu T, Feng Y, Liu C, Shen C. Eco-friendly bacterial cellulose/MXene aerogel with excellent photothermal and electrothermal conversion capabilities for efficient separation of crude oil/seawater mixture. Carbohydr Polym 2024; 336:122140. [PMID: 38670764 DOI: 10.1016/j.carbpol.2024.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Developing novel absorbent materials targeting high-efficiency, low-energy-consumption, and environmental-friendly oil spill cleanup is still a global issue. Porous absorbents endowed with self-heating function are an attractive option because of that they are able to in-situ heat crude oil and dramatically reduce oil viscosity for efficient remediation. Herein, we facilely prepared an eco-friendly multifunctional bacterial cellulose/MXene aerogel (P-SBC/MXene aerogel) for rapid oil recovery. Thanks to excellent full solar spectrum absorption (average absorbance = 96.6 %), efficient photo-thermal conversion, and superior electrical conductivity (electrical resistance = 36 Ω), P-SBC/MXene aerogel exhibited outstanding photothermal and electrothermal capabilities. Its surface temperature could quickly reach 93 °C under 1.0 kW/m2 solar irradiation and 124 °C under 3.0 V voltage respectively, enabling effective heat transfer toward spilled oil. The produced heat significantly decreased crude oil viscosity, allowing P-SBC/MXene aerogel to rapidly absorb oil. By combining solar heating and Joule heating, P-SBC/MXene aerogel connected to a pump-assisted absorption device was capable of achieving all-weather crude oil removal from seawater (crude oil flux = 630 kg m-2 h-1). More notably, P-SBC/MXene aerogel showed splendid outdoor crude oil separation performance. Based on remarkable crude oil/seawater separation ability, the versatile aerogel provides a promising way to deal with large-area oil spills.
Collapse
Affiliation(s)
- Zhenfeng Chen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiahuan Qi
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianhui Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqing Feng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Chaudhary K, Zulfiqar S, Abualnaja KM, Shahid M, Abo-Dief HM, Farooq Warsi M, Cochran EW. Ti 3C 2T x MXene reinforcement: a nickel-vanadium selenide/MXene based multi-component composite as a battery-type electrode for supercapacitor applications. Dalton Trans 2024; 53:11147-11164. [PMID: 38895825 DOI: 10.1039/d4dt01230e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Designing innovative microstructures and implementing efficient multicomponent strategies are still challenging to achieve high-performance and chemo-mechanically stable electrode materials. Herein, a hierarchical three-dimensional (3D) graphene oxide (GO) assisted Ti3C2Tx MXene aerogel foam (MXene-GAF) impregnated with battery-type bimetallic nickel vanadium selenide (NiVSe) has been prepared through a hydrothermal method followed by freeze-drying (denoted as NiVSe-MXene-GAF). 3D-oriented cellular pore networks benefit the energy storage process through the effective lodging of NiVSe particles, improving the access of the electrolyte to the active sites, and alleviating volume changes during redox reactions. The 3D MXene-GAF conductive matrix and heterostructured interface of MXene-rGO and NiVSe facilitated the rapid transport of electrical charges and ions during the charge-discharge process. As a result of the synergism of these effects, NiVSe-MXene-GAF exhibited remarkable electrochemical performance with a specific capacity of 305.8 mA h g-1 at 1 A g-1 and 99.2% initial coulombic efficiency. The NiVSe-MXene-GAF electrode delivered a specific capacity of 235.1 mA h g-1 even at a high current density of 12 A g-1 with a 76.8% rate performance. The impedance measurements indicated a low bulk solution resistance (Rs = 0.71 Ω) for NiVSe-MXene-GAF. Furthermore, the structural robustness of NiVSe-MXene-GAF guaranteed long-term stability with a 91.7% capacity retention for successive 7000 cycles. Thus, developing NiVSe-MXene-GAF provides a progressive strategy for fabricating high-performance 3D heterostructured electrode materials for energy storage applications.
Collapse
Affiliation(s)
- Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan.
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava, 701 03, Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa, 50011, USA.
| | - Khamael M Abualnaja
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Chemistry, College of Science, University of Hafr Al Batin, P. O. Box 1803, Hafr Al Batin, 31991, Saudi Arabia
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan.
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa, 50011, USA.
| |
Collapse
|
7
|
Chaudhary K, Zulfiqar S, ALOthman ZA, Shakir I, Warsi MF, Cochran EW. Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions. Dalton Trans 2024; 53:8177-8190. [PMID: 38683625 DOI: 10.1039/d4dt00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Ω and 1.41 Ω for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting.
Collapse
Affiliation(s)
- Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava 701 03, Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Imran Shakir
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| |
Collapse
|
8
|
He Z, Wang M, Ma S. Porous lignin-based composites for oil/water separation: A review. Int J Biol Macromol 2024; 260:129569. [PMID: 38253151 DOI: 10.1016/j.ijbiomac.2024.129569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Frequent oceanic oil spill incidents and the discharge of industrial oily wastewaters have caused serious threats to environments, food chains and human beings. Lignin wastes with many reactive groups exist as the byproducts from bioethanol and pulping processing industries, and they are either discarded as wastes or directly consumed as a fuel. To make full use of lignin wastes and simultaneously deal with oily wastewaters, porous lignin-based composites have been rationally designed and prepared. In this review, recent advances in the preparation of porous lignin-based composites are summarized in terms of aerogels, sponges, foams, papers, and membranes, respectively. Then, the mechanisms and the application of porous lignin-based adsorbents and filtration materials for oil/water separation are discussed. Finally, the challenges and perspectives of porous lignin-based composites are proposed in the field of oil/water separation. The utilization of abundant lignin wastes can replace fossil resources, and meanwhile porous lignin-based composites can be used to efficiently treat with oily wastewaters. The above utilization strategy opens an avenue to the rational design and preparation of lignin wastes with high-added value, and gives a possible solution to use lignin wastes in a sustainable and environmentally friendly way.
Collapse
Affiliation(s)
- Zhiwei He
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mingkun Wang
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shiyu Ma
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|