1
|
Gao Y, Yang C, Feng G, Zhang BX, Xu ZY, Wang Y, Tleubergenova A, Zhang Y, Meng XZ. Downward migration of per- and polyfluoroalkyl substances (PFAS) in lake sediments: Reconsideration of temporal trend analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138290. [PMID: 40252315 DOI: 10.1016/j.jhazmat.2025.138290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Using sediment cores to reconstruct the contamination history of per- and polyfluoroalkyl substances (PFAS) is essential for chemical management but poses challenge. Herein, sediment cores, as well as surface water and sediments were taken from two Chinese lakes to investigate the vertical distribution and migration of PFAS. Wind wave, properties of sediment and water, and chemical characters of PFAS were examined to clarify the main factors influencing PFAS migration. Total PFAS concentrations in sediment cores ranged from 0.12 to 5.28 ng g-1 dry weight (dw) in Dianchi Lake and from 0.19 to 2.51 ng g-1 dw in Taihu Lake, respectively. Strong hydrodynamic disturbance (wind-wave erosion depth up to 30 cm) in Taihu Lake resulted in consistent PFAS levels and profiles throughout the sediment core, limiting its use for retrospective analysis. In Dianchi Lake, an increasing trend of total organic carbon-normalized PFAS indicated their persistent emission in China over the past decades. Perfluorooctane sulfonic acid increased markedly from early 2000s; temporal trend in composition for perfluorocarboxylates coincided with the global production transition. Finally, we proposed a three-step conceptual framework, including lake selection, key time point assessment, and contamination history reconstruction, to further improve the reliability of PFAS retrospective analysis in lake.
Collapse
Affiliation(s)
- Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Chao Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Yao Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Akmaral Tleubergenova
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, Jiaxing, Zhejiang 314051, China.
| |
Collapse
|
2
|
Batikh A, Colombano S, Cochennec M, Davarzani D, Perrault A, Lions J, Grandclément J, Guyonnet D, Togola A, Zornig C, Devau N, Lion F, Alamooti A, Bristeau S, Djemil M, van Hullebusch ED. Mobilization of poly- and perfluoroalkyl substances (PFAS) from heterogeneous soils: Desorption by ethanol/xanthan gum mixture. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136496. [PMID: 39561539 DOI: 10.1016/j.jhazmat.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Remediating soils contaminated by per- and polyfluoroalkyl substances (PFAS) is a challenging task due to the unique properties of these compounds, such as variable solubility and resistance to degradation. In-situ soil flushing with solvents has been considered as a remediation technique for PFAS-contaminated soils. The use of non-Newtonian fluids, displaying variable viscosity depending on the applied shear rate, can offer certain advantages in improving the efficiency of the process, particularly in heterogeneous porous media. In this work, the efficacy of ethanol/xanthan mixture (XE) in the recovery of a mixture of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorobutane sulfonate (PFBS) from soil has been tested at lab-scale. XE's non-Newtonian behavior was examined through rheological measurements, confirming that ethanol did not affect xanthan gum's (XG) shear-thinning behavior. The recovery of PFAS in batch-desorption exceeded 95 % in ethanol, and 99 % in XE, except for PFBS which reached 94 %. 1D-column experiments revealed overshoots in PFAS breakthrough curves during ethanol and XE injection, due to over-solubilization. XE, (XG 0.05 % w/w) could recover 99 % PFOA, 98 % PFBS, 97 % PFHxS, and 92 % PFOS. Numerical modeling successfully reproduces breakthrough curves for PFOA, PFHxS, and PFBS with the convection-dispersion-sorption equation and Langmuir sorption isotherm.
Collapse
Affiliation(s)
- Ali Batikh
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France; COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France.
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Maxime Cochennec
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Dorian Davarzani
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Arnault Perrault
- COLAS Environnement, 91, rue de la Folliouse, 01700 Miribel, France
| | - Julie Lions
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | | | - Dominique Guyonnet
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Anne Togola
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Clément Zornig
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Nicolas Devau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Fabien Lion
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Amir Alamooti
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Sébastien Bristeau
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Mohamed Djemil
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, Orléans 45100, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| |
Collapse
|
3
|
Xie J, Liu S, Su L, Zhao X, Wang Y, Tan F. Elucidating per- and polyfluoroalkyl substances (PFASs) soil-water partitioning behavior through explainable machine learning models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176575. [PMID: 39343411 DOI: 10.1016/j.scitotenv.2024.176575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, an optimized random forest (RF) model was employed to better understand the soil-water partitioning behavior of per- and polyfluoroalkyl substances (PFASs). The model demonstrated strong predictive performance, achieving an R2 of 0.93 and an RMSE of 0.86. Moreover, it required only 11 easily obtainable features, with molecular weight and soil pH being the predominant factors. Using three-dimensional interaction analyses identified specific conditions associated with varying soil-water partitioning coefficients (Kd). Results showed that soils with high organic carbon (OC) content, cation exchange capacity (CEC), and lower soil pH, especially when combined with PFASs of higher molecular weight, were linked to higher Kd values, indicating stronger adsorption. Conversely, low Kd values (< 2.8 L/kg) typically observed in soils with higher pH (8.0), but lower CEC (8 cmol+/kg), lesser OC content (1 %), and lighter molecular weight (380 g/mol), suggested weaker adsorption capacities and a heightened potential for environmental migration. Furthermore, the model was used to predict Kd values for 142 novel PFASs in diverse soil conditions. Our research provides essential insights into the factors governing PFASs partitioning in soil and highlights the significant role of machine learning models in enhancing the understanding of environmental distribution and migration of PFASs.
Collapse
Affiliation(s)
- Jiaxing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinting Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Wu S, Wu Z, Wang S, Zhang Y, Liao Y, Cai C. Regulation of the co-transport of toluene and dichloromethane by adsorbed phase humic acid under different hydro-chemical conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122562. [PMID: 39305885 DOI: 10.1016/j.jenvman.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The transport behavior of combined organic pollutants in soil and groundwater has attracted significant attention in recent years. Research on the influence of humic acid (HA) on organic pollutant transport behavior mainly focuses on the study of the mobile phase HA, with less research on the adsorbed phase HA, especially regarding its interaction with combined pollutants. To enhance understanding of the regulation of co-transport and retention of combined pollutants by adsorbed phase HA, in this study, tests were conducted to investigate how toluene (TOL) and dichloromethane (DCM) are transported in the presence of adsorbed phase HA at different pH levels and ionic strengths. As the proportions of HA-coated sand increased, so did its adsorption capacity for TOL and DCM, which can be attributed to adsorbed phase HA providing more adsorption sites compared to plain sand, thereby reducing the transport potential of the pollutants. The presence of both TOL and DCM facilitated their mutual transportation due to competitive adsorption controlled by the adsorbed phase HA content in the porous medium. Furthermore, it was observed that pH levels influenced the transport behavior of TOL and DCM when adsorbed phase HA was present since adsorbed phase HA transformation into mobile phase was regulated by pH levels. The transport patterns can be effectively simulated using the chemical nonequilibrium two-site sorption model in HYDRUS-1D, accurately reflecting the retardation coefficients and transport distances based on model parameters. This work sheds new light on the regulatory role of adsorbed phase HA in TOL and DCM transport under diverse hydrochemical conditions, with implications for accurately depicting the behavior of combined pollutants, optimizing the remediation strategies and improving remediation efficiency in contaminated sites.
Collapse
Affiliation(s)
- Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suhang Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youchi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkai Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Garza-Rubalcava U, Klevan C, Pennell KD, Abriola LM. Transport and competitive interfacial adsorption of PFOA and PFOS in unsaturated porous media: Experiments and modeling. WATER RESEARCH 2024; 268:122728. [PMID: 39522483 DOI: 10.1016/j.watres.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation. Although there is a growing body of literature on vadose zone transport, few studies have explored PFAS mixture transport, particularly under conditions where nonlinear sorption processes are important. The present study aims to advance our understanding of PFAS transport in variably saturated porous media through integration of experiments and mathematical modeling. Experiments include batch studies to quantify sorption to the solid phase, interfacial tension (IFT) measurements to estimate adsorption at the air-water interface (AWI), and column studies with F-70 Ottawa sand at 100 % and ca. 50 % water saturation to explore transport mechanisms. Employed PFAS solutions encompass individual solutes and binary mixtures of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentration levels spanning four orders of magnitude to assess competitive and nonlinear sorption at the AWI. Observations demonstrate that concentration levels and competitive effects substantially influence PFAS transport in unsaturated systems. In the presence of PFOS, PFOA experienced less retention than would be anticipated based on single-solute behavior, and effluent breakthrough curves exhibited chromatographic peaking. The presented mathematical model for simultaneous flow and transport of PFAS was able to capture experimental observations with a consistent set of parameters and minimal curve fitting. These results demonstrate the robustness of the model formulation that included rate-limited interfacial mass transfer, an extended Langmuir-Szyszkowski model for adsorption at the AWI, and a scaled Leverett thermodynamic model to predict the AWI specific area. Overall, the results of this work underscore the importance of the AWI in PFAS transport and highlight the relevance of competition effects in adsorption formulations.
Collapse
Affiliation(s)
| | - Craig Klevan
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA
| | - Kurt D Pennell
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| | - Linda M Abriola
- School of Engineering, Brown University. 184 Hope St. Providence, RI 02912, USA.
| |
Collapse
|
6
|
Qie M, Jia X, Li X, Li Y, Wu X, Shi Y, Cai Y. Spatial distribution, source, and fate of per- and polyfluoroalkyl substances in the surrounding environment of closed and converted fluorochemical factories in Fujian, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172766. [PMID: 38670387 DOI: 10.1016/j.scitotenv.2024.172766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Following the closure of perfluorooctanesulfonic acid (PFOS) production to comply with the Stockholm Convention regulations or restrictions, manufacturers have shifted to developing short-chain alternatives like perfluorobutane sulfonic acid (PFBS). However, limited research has been conducted to evaluate the impact of this transition on the surrounding environment. This study focused on the spatial distribution, source, and fate of 18 per- and polyfluoroalkyl substances (PFAS) in the surrounding environment of the closure and transformation of two PFAS manufacturing plants in Fujian, China. The total concentrations of PFAS in surface water, sediment, and fish were within the range of 48.9-72,400 ng/L, 0.930-57.6 ng/g dw, and 3.33-1245 ng/g dw, respectively. The predominant compounds were PFBS, PFOS, and perfluorooctanoic acid (PFOA) among the three matrices. Principal component analysis highlighted significant differences in PFAS profiles across different regions of the Futun River, suggesting diverse sources of PFAS. Source apportionment indicated that despite being closed or converted for almost three years, the two factories still significantly impacted the surrounding environment. The shutdown factory mainly released PFAS characterized by perfluoroalkyl sulfonic acids. In contrast, the PFAS were released from conversion plant with the fingerprint being PFBS and perfluoroalkyl carboxylic acids. The conversion of the factories has resulted in the coexistence of long-chain and short-chain PFAS, which has complicated the composition of PFAS in the environment. As sewage treatment plant could not effectively remove PFBS and perfluorobutanoic acid (PFBA) in wastewater, and due to their strong migration ability, these chemicals had a wider impact range, increasing the difficulty of environmental restoration and management. Risk assessment showed that PFAS downstream of the two factories posed high or moderate ecological risks. Specifically, PFBS, PFOS, and PFOA displayed the highest risk quotients and should be paid further attention.
Collapse
Affiliation(s)
- Mengjie Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Arshadi M, Garza-Rubalcava U, Guedes A, Cápiro NL, Pennell KD, Christ J, Abriola LM. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170566. [PMID: 38331271 DOI: 10.1016/j.scitotenv.2024.170566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Aqueous film forming foams (AFFFs) have been used to extinguish fires since the 1960s, leading to widespread subsurface contamination by per- and polyfluoroalkyl substances (PFAS), an essential component of AFFF. This study presents 1-D simulations of PFAS migration in the vadose zone resulting from AFFF releases. Simulation scenarios used soil profiles from three US Air Force (USAF) installations, encompassing a range of climatic conditions and hydrogeologic environments. A three-component mixture, representative of major constituents of AFFF, facilitated the exploration of competitive and synergistic effects of co-constituents on PFAS migration. To accurately capture unsaturated transport of PFAS in porous media, the model considers (1) surfactant-induced flow, (2) non-linear sorption to the solid phase, (3) competitive accumulation at the air-water interface, and (4) the moisture-dependence of the air-water interfacial area. Defined PFAS releases were consistent with fire training exercises, emergency responses, and accidental spills of record. Simulation results illustrate the importance of hydrogeologic, climatic, geochemical, and AFFF release conditions on PFAS transport and retention. Comparison of field observations and model simulations for Ellsworth AFB indicate that much of the PFOA and PFOS mass is associated with the air-water interface and the solid phase, which limits their migration potential in the vadose zone. Results also show that rates of migration in the aqueous phase are largely controlled by hydrogeologic properties, including recharge rates and hydraulic conductivity. AFFF spill scenarios varying in volume, concentration, and frequency reveal the importance of release characteristics in determining rates of PFAS migration and concentration peaks. Variability is attributed to non-linear sorption processes, where, contrary to simple linear partitioning formulations, transport is strongly affected by the concentration of PFAS species. Simulations also demonstrate the importance of modeling the AFFF as a mixture since competitive interfacial accumulation effects are shown to enhance the mobility of less surface-active PFAS compounds.
Collapse
Affiliation(s)
- Masoud Arshadi
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | | | - Ana Guedes
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - John Christ
- S&B Christ Consulting, Las Vegas, NV 89134, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|