1
|
Cheng Z, Wu M, Hao Y, Mo C, Li Q, Wu J, Wu J, Hu BX, Lu G. Effects of 3D microstructure of porous media on DNAPL migration and remediation by surface active agents in groundwater. ECO-ENVIRONMENT & HEALTH 2024; 3:466-475. [PMID: 39584144 PMCID: PMC11583709 DOI: 10.1016/j.eehl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 11/26/2024]
Abstract
Aquifers composed of porous granular media are important to human beings because they are capable of storing a large amount of groundwater. Contaminant migration and remediation in subsurface environments are strongly influenced by three-dimensional (3D) microstructures of porous media. In this study, fractal models are developed to investigate contaminant transport and surfactant-enhanced aquifer remediation (SEAR) for the regular tetrahedron microstructure (RTM) and right square pyramid microstructure (RSPM). The relationships of permeability and entry pressure are derived for these two kinds of 3D microstructures of granular porous media. Afterward, the difference in perchloroethylene (PCE) migration and SEAR efficiency between RTM and RSPM is investigated by the numerical simulation based on a synthetic heterogeneous granular aquifer. Results indicate that PCE penetrates faster and spreads farther in RSPM-based aquifers compared with RTM-based aquifers. Further, SEAR in RTM-based aquifers can achieve remediation efficiencies of 66.129%-92.214% with a mean of 84.324%, which is clearly lower than the SEAR efficiency of 70.149%-94.773% (with a mean of 89.122%) in RSPM-based aquifers. Findings are significant for understanding the 3D microstructure of porous media and how the microstructure of porous media affects macroscopic contaminant behaviors and remediation.
Collapse
Affiliation(s)
- Zhou Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Bill X. Hu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Kim J, Kaown D, Lee KK. Coupling of radon and microbial analysis for dense non-aqueous-phase liquid tracing and health risk assessment in groundwater under seasonal variations. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134939. [PMID: 38889466 DOI: 10.1016/j.jhazmat.2024.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Dense non-aqueous-phase liquids (DNAPLs) represent one of the most hazardous contaminants of groundwater, posing health risks to humans. Radon is generally used to trace DNAPLs; however, external factors, such as rainfall or stream water, can influence its efficacy. To overcome these limitations, this study pioneered the integration of radon and microbial community structures to explore DNAPL tracing and natural attenuation in the context of seasonal variations for human health risk assessments. The results showed that a radon tracer can estimate DNAPL saturation in the source zone, especially during the dry season when radon deficiency predominates. However, samples exhibited mixing effects during the wet season because of local precipitation. Moreover, bioremediation and low health risks were observed in the plume boundary zone, indicating that microbial dechlorination was a predominant factor determining these risks. The abnormal patterns of radon observed during the wet season can be elucidated by examining microbiological communities. Consequently, a combined approach employing radon and microbial analysis is advocated for the boundary zone, albeit with a less intensive management strategy, compared with that for the source zone. This novel coupling method offers a theoretical and practical foundation for managing DNAPL-contaminated groundwater.
Collapse
Affiliation(s)
- Jaeyeon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, the Republic of Korea.
| |
Collapse
|
3
|
Feng C, Liu F, Bi E. Control mechanism of trichloroethylene back diffusion by microstructure in a low permeability zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133593. [PMID: 38280322 DOI: 10.1016/j.jhazmat.2024.133593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The trailing effect caused by the back diffusion (BD) of contaminants in low-permeability zones (LPZs), which prolongs remediation time and increases remediation costs, has caused widespread concern. In this study, the BD of trichloroethylene (TCE) from the LPZ to the high-permeability zone (HPZ) was determined using flow cell experiments. The anomalous variance in the BD flux of the TCE-spanning 2-4 times the deviation under identical experimental conditions, attracted our attention. To determine the cause of this aberrant behavior, a micro computed tomography (micro-CT) characterization of the flow cell was conducted, which revealed significant microstructural disparities in the LPZ. The study found that the pore connectivity of LPZs determines the efficiency of BD and that LPZs with different porosities have different sensitivities to connectivity. The pore shape complexity indicates the possibility of BD retardation, and remediation is more difficult for these types of LPZs. Changing the structure of LPZs to improve their remediation efficiency may be a new research topic. Notably, correcting the model parameters through microstructural characterization significantly refined the prediction accuracy.
Collapse
Affiliation(s)
- Chen Feng
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Erping Bi
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|