1
|
Xiong X, Luo Z, Luo S, Bai L, Shang Y, Junker AL, Wei Z. Sustained hydrated electron production for enhanced reductive defluorination of PFAS in groundwater. WATER RESEARCH 2025; 279:123401. [PMID: 40081177 DOI: 10.1016/j.watres.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Hydrated electrons (eaq‒; ‒2.9 V) are effective at defluorinating per- and polyfluoroalkyl substances (PFAS), but production of eaq‒ often requires excess source chemicals, anoxic environment, and harsh pH conditions. To improve the feasibility of the reductive process, we harnessed phenol as a source chemical yielding four eaq‒ stoichiometrically and utilized dithionite (DTN) to catalyze phenol cycle for sustained eaq‒ yields. The added DTN not only scavenges dissolved oxygen, the eaq‒ trap, but also reductively transforms phenol degradation product, p-benzoquinone, to hydroquinone which yields more eaq‒ upon UV irradiation. In the UV/phenol/DTN system, up to 70 % defluorination of PFOA solution was achieved while the impact of groundwater matrix was minor on the degradation performance of PFOA, PFOS and GenX. Especially in acidic conditions, •H, the conjugate acid of eaq‒, is the dominant radical for decomposing the three tested PFAS. Density functional theory calculations reveal hydrogen bonding and van der Waals interactions between PFAS and phenol, facilitating both decarboxylation and fluorine elimination in PFAS structures. The combined experimental and theoretical evidence demonstrated the capability of the new UV/phenol/DTN method to sustain eaq‒ production for effective defluorination of PFAS in the groundwater matrix.
Collapse
Affiliation(s)
- Xingaoyuan Xiong
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Zirui Luo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Shuang Luo
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lu Bai
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Yanan Shang
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark; School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Allyson L Junker
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3 Aarhus C, 8000, Denmark.
| |
Collapse
|
2
|
Kim T, Eom S, Kim MK, Zoh KD. Degradation and defluorination of C 6F 13 PFASs with different functional groups by VUV/UV-based reduction and oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137216. [PMID: 39862768 DOI: 10.1016/j.jhazmat.2025.137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-C6F13-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water. PFCAs such as PFHxA, PFPeA, and PFBA were formed by VUV/UV photolysis of PFHpA and 6:2 FTS, but the PFCA formation was inhibited in the VUV/UV/sulfite reaction. The degradation of the three PFASs in the VUV/UV/sulfite reaction was mainly carried out by H/F and SO3•-/F exchange mechanisms, mediated by hydrated electrons (eaq-) produced in the reaction. During the VUV/UV/sulfite reaction, PFCA precursors were first formed as transformation products, which were further transformed into PFCAs by the following VUV/UV/H2O2 reaction, implying enhanced defluorination of three PFASs. Our results indicate that VUV/UV-based treatments can be an option for PFAS degradation and defluorination by combining advanced reduction and oxidation processes and utilizing both eaq- and oxidative radicals.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Eom S, Kim T, Kim MK, Park J, Zoh KD. GenX degradation mechanism using 2-hydroxyphenyl acetic acid and cetyl trimethyl ammonium bromide under UV-LED irradiation through micelle formation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124403. [PMID: 39914210 DOI: 10.1016/j.jenvman.2025.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
This study investigated the removal of hexafluoropropylene oxide dimer acid (GenX) using 2-hydroxyphenyl acetic acid (2-HPA) as a hydrated electron (eaq-) producer under UV-LED (265 nm) irradiation in the presence of cetyl trimethyl ammonium bromide (CTAB) as a cationic surfactant. The addition of CTAB above the critical micelle concentration of 0.62 mM at pH 7 resulted in an enhancement of GenX removal due to the formation of a micelle structure. The generation of hydrated electron (eaq-) by 2-HPA was confirmed through ESR analysis. At pH 7, 3.0 mM CTAB led to 86% GenX removal and 40% defluorination after 6 h. While the removal of GenX remained consistent at pH 5, 7, and 9, it declined at pH 11. GenX removal efficiency was affected by the presence of anionic eaq- scavengers such as NO2- and NO3-, with NO3- showing higher inhibition than NO2-. Identification by LC-MS/MS revealed PFPrA and TFA as the main transformation products (TPs), while seven additional TPs (TP 64, TP 146, TP 162, TP 186, TP 228, TP 282, and TP 312) were newly identified by non-target screening. The degradation pathway of GenX involves ether bond cleavage, decarboxylation-hydroxylation-elimination-hydrolysis (DHEH) chain shortening, and α-carbon H/F exchange, as determined through identified TPs and theoretical calculations. ECOSAR simulation indicated that most TPs exhibit lower ecotoxicity compared to GenX. This study firstly utilized UV-LED (265 nm) as a light source for degrading GenX by the reaction took in the micelle without high pH or anoxic conditions, as typically required in advanced reduction processes.
Collapse
Affiliation(s)
- Soyeon Eom
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Taeyeon Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Jeonghoon Park
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Qi Y, Yang Y, Yu X, Wu S, Wang W, Yu Q, Wang C, Liang Y, Sun H. Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1875-1886. [PMID: 39800992 DOI: 10.1021/acs.est.4c10411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts. Importantly, the initial dissolved oxygen, H+, and impurities in surface water scarcely inhibited the defluorination of the PFASs. The difference in the defluorination mechanism between PFOA and GenX under the action of •H was elucidated by combining theoretical calculations with targeted and nontargeted analysis methods. The investigation of the photodegradation of different PFASs indicates that perfluoroether compounds were not easily photodegraded via reduction of •H compared with other compounds, whereas polyfluorinated compounds in which some F atoms were replaced with Cl were more prone to elimination. However, the UV/•H system was ineffective against perfluorosulfonic acids. This study provides an unprecedented perspective for further development of the removal technology of PFASs and the design of alternative PFASs that are easy to eliminate.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yinbo Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xue Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Weicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qin Yu
- Liaoning Jinhua Xinda Ecological Environment Technology Co., Ltd., Panjin 124000, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, New York 12222, United States
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
5
|
Banayan Esfahani E, Asadi Zeidabadi F, Jafarikojour M, Mohseni M. Photo-reductive decomposition of perfluorooctane sulfonate (PFOS) and its common alternatives by UV/VUV/sulfite process: Mechanism, kinetic modeling, and water matrix effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175796. [PMID: 39187080 DOI: 10.1016/j.scitotenv.2024.175796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The present study investigated the photo-reduction of perfluorooctane sulfonate (PFOS) and its alternatives, focusing on decomposition mechanisms, active species involvement, the influence of background water constituents, and kinetic model development. The decomposition and defluorination rates followed the order of PFOS > PFHxS > 6:2 FTSA > PFBS, with shorter chains and CH2 linkers enhancing the resistance of PFOS alternatives against the attack of hydrated electrons (eaq-). Two primary pathways were identified during the photodegradation of PFAS: (i) H/F exchange at CF bonds with the lowest bond dissociation energies (BDEs) and (ii) functional group cleavage followed by short-chain PFCAs formation, with OH playing a crucial role in transforming intermediates. Adding iodide and elevated temperatures demonstrated a synergistic effect on PFBS decomposition and defluorination, with high temperatures promoting functional group cleavage as the preferred defluorination pathway. The study examined the impact of background water constituents in different aqueous environments, from surface waters to wastewater streams and ion-exchange brine concentrates. Chloride exhibited a concentration-based dual impact on the UV/VUV/sulfite process: promotive effects at low dosages (1-10 mM) by acting as a secondary eaq- mediator, and adverse effects at high dosages (20-500 mM) due to the scavenging effect of generated chlorine radicals (Cl). High ionic strength adversely affected eaq- quantum efficiency. Additionally, bicarbonate and natural organic matter (NOM) had opposing effects on PFOS photo-reduction, primarily through eaq- scavenging and pH alteration. Kinetic modeling revealed reaction rate constants of the studied PFAS with eaq- ranging from 1.8 × 106 to 1.3 × 109 M-1 s-1, corroborating the concentration profiles of active species and highlighting the reductive nature of sulfite-mediated processes.
Collapse
Affiliation(s)
- Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Fatemeh Asadi Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Morteza Jafarikojour
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada.
| |
Collapse
|
6
|
Zhang H, Sun W, Zhang J, Ma J. Vacuum-ultraviolet based advanced oxidation and reduction processes for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134432. [PMID: 38691932 DOI: 10.1016/j.jhazmat.2024.134432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The use of vacuum-ultraviolet (VUV) photolysis in water treatment has been gaining significant interest due to its efficacy in degrading refractory organic contaminants and eliminating oxyanions. In recent years, the reactive species driving pollutant decomposition in VUV-based advanced oxidation and reduction processes (VUV-AOPs and VUV-ARPs) have been identified. This review aims to provide a concise overview of VUV photolysis and its advancements in water treatment. We begin with an introduction to VUV irradiation, followed by a summary of the primary reactive species in both VUV-AOPs and VUV-ARPs. We then explore the factors influencing VUV-photolysis in water treatment, including VUV irradiation dose, catalysts or activators, dissolved gases, water matrix components (e.g., DOM and inorganic anions), and solution pH. In VUV-AOPs, the predominant reactive species are hydroxyl radicals (˙OH), hydrogen peroxide (H2O2), and ozone (O3). Conversely, in VUV-ARPs, the main reactive species are the hydrated electron (eaq-) and hydrogen atom (˙H). It is worth noting that VUV-based advanced oxidation/reduction processes (VUV-AORPs) can transit between VUV-AOPs and VUV-ARPs based on the externally added chemicals and dissolved gases in the solution. Increase of the VUV irradiation dose and the concentration of catalysts/activators enhances the degradation of contaminants, whereas DOM and inorganic anions inhibit the reaction. The pH influences the redox potential of ˙OH, the speciation of contaminants and activators, and thus the overall performance of the VUV-AOPs. Conversely, an alkaline pH is favored in VUV-ARPs because eaq- predominates at higher pH.
Collapse
Affiliation(s)
- Honglong Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
7
|
Li Y, Tao C, Fu D, Jafvert CT, Zhu T. Integrating molecular descriptors for enhanced prediction: Shedding light on the potential of pH to model hydrated electron reaction rates for organic compounds. CHEMOSPHERE 2024; 349:140984. [PMID: 38122944 DOI: 10.1016/j.chemosphere.2023.140984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Hydrated electron reaction rate constant (ke-aq) is an important parameter to determine reductive degradation efficiency and to mitigate the ecological risk of organic compounds (OCs). However, OC species morphology and the concentration of hydrated electrons (e-aq) in water vary with pH, complicating OC fate assessment. This study introduced the environmental variable of pH, to develop models for ke-aq for 701 data points using 3 descriptor types: (i) molecular descriptors (MD), (ii) quantum chemical descriptors (QCD), and (iii) the combination of both (MD + QCD). Models were screened using 2 descriptor screening methods (MLR and RF) and 14 machine learning (ML) algorithms. The introduction of QCDs that characterized the electronic structure of OCs greatly improved the performance of models while ensuring the need for fewer descriptors. The optimal model MLR-XGBoost(MD + QCD), which included pH, achieved the most satisfactory prediction: R2tra = 0.988, Q2boot = 0.861, R2test = 0.875 and Q2test = 0.873. The mechanistic interpretation using the SHAP method further revealed that QCDs, polarizability, volume, and pH had a great influence on the reductive degradation of OCs by e-aq. Overall, the electrochemical parameters (QCDs, pH) related to the solvent and solute are of significance and should be considered in any future ML modeling that assesses the fate of OCs in aquatic environment.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Chad T Jafvert
- Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|