1
|
Wang W, Zhang J, Huang G, Pryjomska-Ray I, Volmer DA, Cai Z. Tire-additive chemicals and their derivatives in urban road dust: Spatial distributions, exposures, and associations with tire and road wear particles. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137749. [PMID: 40024120 DOI: 10.1016/j.jhazmat.2025.137749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Tires, as a globally utilized product, emit pollutants including various tire-additive chemicals (TACs), and tire and road wear particles (TRWPs) containing substantial microplastics. Several TACs have been proven to have aquatic toxicity, induce health risks including endocrine disruption, allergic effects, and cardiovascular problems, while TRWPs are also very strongly suspected. With the emergence of multiple novel TAC derivatives recently, yet knowledge of their occurrence, spatial distribution, and potential associations remains largely insufficient. In this work, we have systematically investigated 25 TACs, including para-phenylenediamine (PPDs), several newly identified quinones (PPD-Qs) first reported in urban dust, and TRWPs across road dust from Hong Kong and Berlin. By coupling UPLC-MS/MS and pyrolysis-GC/MS analyses, we achieved concurrent quantification of trace TAC derivatives and TRWPs. Distinct spatial patterns of these tire-derived contaminants were identified, in which Hong Kong exhibited higher TACs linked to dense traffic, while the TRWP levels reached 9420 μg/g near auto factory in Berlin. Highway dust contained maximum contaminant loads of both TACs (5.0-fold higher) and TRWPs (5.3-fold higher) compared to other road types. Significantly linear associations were found between emerging TAC derivatives and TRWPs, implying their potential as candidate markers. Exposure assessments revealed PPDs and PPD-Qs intake doses surpassed benzothiazole and its derivatives, highlighting non-negligible risks caused by emerging TAC derivatives. This work establishes a framework for evaluating region-specific emission drivers and provides critical baseline data of multiple tire-related contaminants across different compartments. Potential markers for TRWPs were identified, which may be further utilized for their identification and determination.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Jing Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong
| | - Iweta Pryjomska-Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
2
|
Tariq Z, Williams ID, Cundy AB, Zapata-Restrepo LM. A Critical Review of Sampling, Extraction and Analysis Methods for Tyre and Road Wear Particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126440. [PMID: 40373858 DOI: 10.1016/j.envpol.2025.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Tyre and road wear particles (TRWPs) have become an increasing contamination concern because of their extensive distribution in the environment. A comprehensive overview of the methods for sampling, treatment and analysis of environmental samples for TRWPs (and their benefits and limitations) is lacking. We evaluate and critically assess the sampling, treatment and analysis methods previously reported for water, air, road dust and sediment/soil samples. We suggest research frameworks for studying TRWPs in these media. Microscopy and thermal analysis techniques such as scanning electron microscopy (with energy dispersive X-ray analysis), environmental scanning electron microscopy, 2-dimensional gas chromatography mass spectrometry and liquid chromatography with tandem mass spectrometry in the case of complex samples, are optimal methods for determination of the number and mass of TRWPs. Issues for further investigation and analysis recommendations are provided.
Collapse
Affiliation(s)
- Zainab Tariq
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | - Ian D Williams
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton, SO14 3ZH, United Kingdom
| | - Lina M Zapata-Restrepo
- Institute of Biology, Faculty of Natural and Exact Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Ren Y, Li W, Zhou P, Wu H, Yu L, Wang R, Qu C, Zhao Y, Liu J, Wu C. Occurrence, Emission, and Transport of Tire and Road Wear Particles across Four Environmental Compartments along Ring Road Networks in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23160-23168. [PMID: 39686692 DOI: 10.1021/acs.est.4c08466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Tire and road wear particles (TRWPs) are an appreciable source of microplastics (MPs); however, knowledge of their large-scale occurrence and mass flux based on robust sampling and quantification is limited. Herein, the first city-wide survey of TRWPs across environmental compartments (road dust, snowbank, water, and sediment from rivers and lakes) along four ring roads (beltways) in Beijing was performed. TRWP concentrations (n = 74) were quantified using bonded-sulfur as a marker to reveal the city-wide spatial distributions and adopted to establish a framework estimating TRWP emission factors (EFs) and mass flux from generation to remote atmospheric, terrestrial, and aquatic transport. The TRWP concentrations were 0.46 × 104-3.55 × 104 μg/g (road dust), 0.65-46.18 mg/L (water), 0.28 × 104-1.79 × 104 μg/g (sediment), and 9.46-19.12 mg/L (snowbank) and were highly related to nearby traffic conditions. Based on total EFs (34.4-288.5 mg/vKT) and airborne EFs (6.2-17.2 mg/vKT) calculated from the preceding concentrations, the TRWP emissions in Beijing were determined as 1.28 × 104 t/a. Among them, 61.3% was eventually disposed of in landfills owing to frequent road sweeping and high runoff treatment efficiency and 18.1% was stranded on the roadside; nevertheless, 11.9% escaped to freshwater systems and 5.7 and 3.0% airborne transported to remote land and ocean, respectively. This study provides new insights into the emissions and fate of TRWPs.
Collapse
Affiliation(s)
- Yifan Ren
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhou
- Beijing Environmental Engineering Technology Co., Ltd., Beijing 101111, China
| | - Haoran Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Bgrimm MTC Technology Co., Ltd., Beijing 102628, China
| | - Lei Yu
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Ruojin Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Jung U, Choi SS. Seasonal variation in characteristics of wear microparticles of high density (> 1.8 g cm -3) produced on road. Heliyon 2024; 10:e39724. [PMID: 39524704 PMCID: PMC11547893 DOI: 10.1016/j.heliyon.2024.e39724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Wear microparticles are produced on roads by traffic, and they can be transferred to rivers and seas settling as sediments. The sedimentation rate increases with increasing particle density and size. In this study, the types and amounts of high-density wear microparticles (HDWPs, >1.8 g cm-3) in road dust were investigated. The HDWPs ranging from 106 to 1000 μm were classified into eight categories depending on the color, shape, and physical property: mineral particles (MPs), asphalt pavement wear particles (APWPs), glass particles (GPs), glass beads (GBs), tire-road wear particles (TRWPs), plant-related particles (PRPs), road paint wear particles (RPWPs), and plastic particles (PPs). The HDWPs in road dust were the most abundant in winter (94.0-95.6 wt%), while being the lowest in spring (82.7-90.7 wt%). MPs accounted for over 50 wt% of the HDWPs; however, TRWPs were not found in HDWPs larger than 200 μm. The HDWPs produced by the abrasion of roads, including asphalt pavements and marking paint, exceeded 90 wt%. The non-crosslinked organic components in the HDWPs were removed by chloroform treatment. The chloroform-soluble components in the HDWPs were much more present in winter than in other seasons. Swelling TRWPs with chloroform released mineral particles on the surface.
Collapse
Affiliation(s)
- Uiyeong Jung
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| |
Collapse
|
5
|
Bae SH, Chae E, Park YS, Lee SW, Yun JH, Choi SS. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173948. [PMID: 38880134 DOI: 10.1016/j.scitotenv.2024.173948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Microparticles such as tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) are generated by the friction between tire tread and road surface. TRWPs and RPWPs on roads are dispersed through traffic and transferred to rivers and seas via runoff to accumulate in sediments. However, research on the generation of both TRWP and RPWP has rarely been conducted. In this study, the generation of both TRWP and RPWP was investigated using a novel tire abrasion simulator equipped with paved road and bus tire, and their contributions to the generation of microparticles were examined. Two types of model paved roads, asphalt and concrete pavements (AP and CP, respectively), were applied. TRWPs generated from the simulator exhibited morphologies very similar to those on real roads. The abrasion rate for the CP was 2.8 times higher than that for the AP. The wear particle size distributions peaked at the size ranges of 63-106 μm and 212-500 μm for the AP and CP, respectively. Totals of 84 wt% and 89 wt% of the wear particles were distributed in size ranges of 38-212 μm for the AP and 106-1000 μm for the CP. The tire wear particle (TWP) contents in the total wear particles of 38-500 μm were 21.7 wt% and 30.0 wt% for the AP and CP, respectively, and decreased as the particle size decreased. The weight of RPWP was higher than that of TWP in TRWP. Contributions from road pavement to the generation of wear particles of 38-500 μm were 3.6 and 2.3 times higher than those from tire tread for the AP and CP, respectively, and the contribution increased as the wear particle size decreased.
Collapse
Affiliation(s)
- Seok-Hu Bae
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Eunji Chae
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Yong-Soo Park
- Daekyung Engineering Co., 32, Seokcheon-ro 398 beon-gil, Bucheon-si, Gyeonggi-do 14450, Republic of Korea
| | - Seung-Won Lee
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Ju-Ho Yun
- Chassis & Materials Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myun, Dongnam-gu, Chonan-si, Chungnam 31214, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
6
|
Chae E, Yang SR, Choi SS. Abrasion Behaviors of Silica-Reinforced Solution Styrene-Butadiene Rubber Compounds Using Different Abrasion Testers. Polymers (Basel) 2024; 16:2038. [PMID: 39065355 PMCID: PMC11280858 DOI: 10.3390/polym16142038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Solution styrene-butadiene rubber (SSBR) is widely used to improve the properties of tire tread compounds. Tire wear particles (TWPs), which are generated on real roads as vehicles traverse, represent one of significant sources of microplastics. In this study, four SSBR compounds were prepared using two SSBRs with high styrene (STY samples) and 1,2-unit (VIN samples) contents, along with dicyclopentadiene resin. The abrasion behaviors were investigated using four different abrasion testers: cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The abrasion rates observed in the Lambourn and LAT100 abrasion tests were consistent with each other, but the results of CC and DIN abrasion tests differed from them. The addition of the resin improved the abrasion rate and resulted in the generation of large wear particles. The abrasion rates of STY samples in the Lambourn and LAT100 abrasion tests were lower than those of VIN samples, whereas the values in the CC and DIN abrasion tests were higher than those of VIN samples. The wear particles were predominantly larger than 1000 μm, except for the VIN sample in the DIN abrasion test. However, TWPs > 1000 μm are rarely produced on real roads. The size distributions of wear particles > 1000 μm were 74.0-99.5%, 65.9-93.4%, 7.2-95.1%, and 37.5-83.0% in the CC, Lambourn, DIN, and LAT100 abrasion tests, respectively. The size distributions of wear particles in the Lambourn and LAT100 abrasion tests were broader than those in the other tests, whereas the distributions in the CC abrasion test were narrower. The abrasion patterns and the morphologies and size distributions of wear particles generated by the four abrasion tests varied significantly, attributable to differences in the bound rubber contents, crosslink densities, and tensile properties.
Collapse
Affiliation(s)
- Eunji Chae
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| | - Seong Ryong Yang
- Hankook Tire & Technology Company, 50 Yuseong-daero, Yuseong-gu, Daejeon 34127, Republic of Korea;
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| |
Collapse
|
7
|
Chae E, Jung U, Choi SS. Types and concentrations of tire wear particles (TWPs) in road dust generated in slow lanes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123670. [PMID: 38423271 DOI: 10.1016/j.envpol.2024.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Drivers commonly navigate their vehicles at moderate speeds in proximity to traffic lights. In this study, road dust samples were collected in the vicinity of traffic lights, as well as at a taxi stand (TS) situated between traffic lights, with considerations given to both forward direction (FD) and backward direction (BD). The characterization of tire wear particles (TWPs) in the road dust was meticulously conducted based on particle size. Notably, tire-road wear particles (TRWPs) were conspicuously absent in samples surpassing 500 μm. Furthermore, TRWPs comprised less than 1% of identified particles in the road dust samples of 212-500 μm, with their origin traceable to heavy vehicles rather than passenger cars. The abundance of TRWPs from heavy vehicles exhibited marked variations, with heightened prevalence in the TS and BD samples as opposed to the FD sample. For the samples smaller than 212 μm, the composition of natural rubber (NR) in TWPs demonstrated a diminishing trend with escalating particle size. Conversely, the composition of styrene-butadiene rubber (SBR) exhibited an upward trajectory independent of the sampling site. The NR composition ratio in TWPs followed the order: TS (17-55%) > FD (17-47%) > BD (13-36%), while the SBR composition ratio exhibited the sequence: BD (62-86%) > FD (48-79%) > TS (24-70%). The TWP concentrations in road dust obtained from the TS (0.35-0.82%) were discernibly lower than those in the FD (0.54-1.77%) and BD (0.61-1.29%) samples. Specifically, the average TWP concentrations in road dust samples, falling within the size range of 20-212 μm, were 0.45%, 1.06%, and 0.91% for the TS, FD, and BD samples, respectively. These concentrations were lower than the corresponding values observed in samples collected from a bus stop.
Collapse
Affiliation(s)
- Eunji Chae
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Uiyeong Jung
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|