1
|
Szczepanska-Sadowska E, Cudnoch-Jędrzejewska A, Żera T. Molecular Interaction Between Vasopressin and Insulin in Regulation of Metabolism: Impact on Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:13307. [PMID: 39769071 PMCID: PMC11678547 DOI: 10.3390/ijms252413307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin. Acting on V1a receptors in the liver, AVP stimulates glycogenolysis, reduces synthesis of glycogen, and promotes fatty acid synthesis and acetyl CoA carboxylase activity. Stimulating V1b receptors in the pancreatic islands, AVP promotes release of insulin and glucagon-like peptide-1 (GLP-1) and potentiates stimulatory effects of glucose and ACTH on secretion of insulin. Simultaneously, insulin increases AVP secretion by neurons of the paraventricular nucleus and the supraoptic nucleus. There is strong evidence that secretion of AVP and its metabolic effectiveness are significantly altered in metabolic and cardiovascular diseases. Both experimental and clinical data indicate that inappropriate interactions of AVP and insulin play an important role in the development of insulin resistance in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Huang HC, Hsu SJ, Chang CC, Kao YC, Chuang CL, Hou MC, Lee FY. Lycopene treatment improves intrahepatic fibrosis and attenuates pathological angiogenesis in biliary cirrhotic rats. J Chin Med Assoc 2022; 85:414-420. [PMID: 35120355 DOI: 10.1097/jcma.0000000000000699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Liver cirrhosis is characterized by liver fibrosis and pathological angiogenesis, which results in hyperdynamic circulation, portal-systemic collateral vascular formation, and abnormal angiogenesis. Lycopene is a nutrient mostly found in tomatoes. The beneficial effects of lycopene include anti-inflammation, anti-oxidation, anti-fibrosis, and anti-angiogenesis; however, the association between liver cirrhosis and pathological angiogenesis has yet to be studied. This study aimed to investigate the effects of lycopene on biliary cirrhotic rats. METHODS The efficacy of lycopene treatment in common bile duct ligation (BDL)-induced biliary cirrhotic rats was evaluated. Sham-operated rats served as surgical controls. Lycopene (20 mg/kg/day, oral gavage) or vehicle was administered to BDL or sham-operated rats for 4 weeks, after which the hemodynamics, liver biochemistry, portal-systemic shunting, liver and mesenteric angiogenesis, and hepatic angiogenesis-related protein expressions were examined. RESULTS Lycopene alleviated hyperdynamic circulation as evidenced by decreased cardiac index and increased peripheral vascular resistance (p < 0.05), but it did not affect portal pressure or liver biochemistry in the BDL rats (p > 0.05). Lycopene significantly diminished the shunting degree of portal-systemic collaterals (p = 0.04) and mesenteric vascular density (p = 0.01), and also ameliorated intrahepatic angiogenesis and liver fibrosis. In addition, lycopene upregulated endothelial nitric oxide synthase, protein kinase B (Akt) and phosphatidylinositol 3-kinases (PI3K), and downregulated vascular endothelial growth factor receptor 2 (VEGFR-2) protein expressions (p < 0.05) in the livers of the BDL rats. CONCLUSION Lycopene ameliorated liver fibrosis, hyperdynamic circulation, and pathological angiogenesis in biliary cirrhotic rats, possibly through the modulation of intrahepatic Akt/PI3K/eNOS and VEGFR-2 pathways.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yun-Chieh Kao
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Huang HC, Hsu SJ, Chuang CL, Hsiung SY, Chang CC, Hou MC, Lee FY. Effects of dipeptidyl peptidase-4 inhibition on portal hypertensive and cirrhotic rats. J Chin Med Assoc 2021; 84:1092-1099. [PMID: 34670224 DOI: 10.1097/jcma.0000000000000636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Portal hypertension is a pathophysiological abnormality with distinct vascular derangements associated with liver cirrhosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents which exert pleiotropic vascular effects, but their relevant impact on portal hypertension and liver cirrhosis remains unclear. This study aims to clarify this issue. METHODS Rats receiving partial portal vein ligation (PVL) and common bile duct ligation (BDL) served as experimental models for portal hypertension and cirrhosis, respectively. After linagliptin (a DPP-4 inhibitor) treatment, the survival rate, hemodynamics, biochemistry parameters and liver histopathology were evaluated. In addition, the collateral vascular responsiveness and severity of portal-systemic shunting were examined. mRNA and protein expression in the vasculature and liver were also examined. RESULTS Linagliptin significantly reduced portal pressure (control vs linagliptin: 12.9 ± 1.2 vs 9.1 ± 2.0 mmHg, p = 0.001) and upregulated nitric oxide synthase expression in the collateral vessel, superior mesentery artery, and liver of PVL rats. However, the portal hypotensive effect was insignificant in BDL rats. Glucose plasma levels, liver and renal biochemistry parameters were not significantly altered by linagliptin. The degree of portal-systemic shunting and collateral vascular responsiveness were also not significantly altered by linagliptin treatment. Linagliptin did not improve liver fibrosis and hepatic inflammation in BDL rats. CONCLUSION DPP-4 inhibition by linagliptin reduced portal pressure in portal hypertensive rats but not in cirrhotic rats. It may act by decreasing intrahepatic resistance via upregulation of hepatic nitric oxide synthase in portal hypertensive rats.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shao-Yu Hsiung
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Hsu SJ, Huang HC, Chuang CL, Chang CC, Hou MC, Lee FY, Lee SD. Dual Angiotensin Receptor and Neprilysin Inhibitor Ameliorates Portal Hypertension in Portal Hypertensive Rats. Pharmaceutics 2020; 12:E320. [PMID: 32252377 PMCID: PMC7238216 DOI: 10.3390/pharmaceutics12040320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Portal hypertension is characterized by exaggerated activation of the renin-angiotensin-aldosterone axis. Natriuretic peptide system plays a counter-regulatory role, which is modulated by neprilysin. LCZ696 (sacubitril/valsartan) is a dual angiotensin receptor and neprilysin inhibitor. This study evaluated the effect of LCZ696 on portal hypertensive rats. METHODS Portal hypertension was induced by partial portal vein ligation (PVL) in rats. LCZ696, valsartan (angiotensin receptor blocker), or normal saline (control) was administered in PVL rats for 10 days. Then, hemodynamic and biochemistry data were obtained. The hepatic histology and protein expressions were surveyed. On the parallel groups, the portal-systemic shunting degrees were determined. RESULTS LCZ696 and valsartan reduced mean arterial pressure and systemic vascular resistance. LCZ696, but not valsartan, reduced portal pressure in portal hypertensive rats (control vs. valsartan vs. LCZ696: 15.4 ± 1.6 vs. 14.0 ± 2.3 vs. 12.0 ± 2.0 mmHg, control vs. LCZ696: P < 0.05). LCZ696 and valsartan improved liver biochemistry data and reduced intrahepatic Cluster of Differentiation 68 (CD68)-stained macrophages infiltration. Hepatic endothelin-1 (ET-1) protein expression was downregulated by LCZ696. The portal-systemic shunting was not affected by LCZ696 and valsartan. CONCLUSION LCZ696 and valsartan reduced mean arterial pressure through peripheral vasodilation. Furthermore, LCZ696 significantly reduced portal pressure in PVL rats via hepatic ET-1 downregulation.
Collapse
Affiliation(s)
- Shao-Jung Hsu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Chih Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Shou-Dong Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| |
Collapse
|
5
|
Extrahepatic angiogenesis hinders recovery of portal hypertension and collaterals in rats with cirrhosis resolution. Clin Sci (Lond) 2018; 132:669-683. [PMID: 29449343 DOI: 10.1042/cs20171370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
Liver cirrhosis is characterized by portal hypertension. However, the alteration of portal hypertension-related derangements during cirrhosis resolution is not well known. The present study aimed to establish animal models with cirrhosis resolution and to investigate the relevant changes during this process. Male Sprague-Dawley rats were applied. In reverse thioacetamide (rTAA) model, rats were randomly allocated into four groups with control, thioacetamide (TAA) cirrhosis and rTAA groups that discontinued TAA for 4 or 8 weeks after cirrhosis induction. In reverse bile duct ligation (rBDL) model, rats received choledochoduodenal shunt surgery upon the establishment of cirrhosis and 4, 8, or 16 weeks were allowed after the surgery. At the end, portal hypertension-related parameters were evaluated. Cirrhosis resolution was observed in rTAA groups. Portal pressure (PP) decreased after cirrhosis resolution but remained higher than control group (control, TAA, rTAA4, rTAA8 (mmHg): 5.4 ± 0.3, 12.9 ± 0.3, 8.6 ± 0.4, 7.6 ± 0.6). Further survey found the increased splanchnic blood flow did not reduce during cirrhosis resolution. The extrahepatic pathological angiogenesis was not ameliorated (% of mesenteric window area: 1.2 ± 0.3, 7.3 ± 1.1, 8.3 ± 1.0, 11.3 ± 2.7). In collateral system, the shunting degree reduced while the vessels structure remained. The vascular contractility of all systems and nitric oxide (NO) production were normalized. In rBDL series, PP decreased in rBDL16 groups but the extrahepatic angiogenesis persisted. In conclusion, cirrhosis resolution attenuates but not completely normalizes portal hypertension because of persistently high splanchnic inflow and angiogenesis. In clinical setting, vascular complications such as varices could persist after cirrhosis resolution and further investigation to define the follow-up and treatment strategies is anticipated.
Collapse
|
6
|
Huang HC, Wang SS, Lee JY, Chen YC, Lee FY, Lin HC, Chang CC, Lee SD. Simvastatin effects on portal-systemic collaterals of portal hypertensive rats. J Gastroenterol Hepatol 2010; 25:1401-9. [PMID: 20659230 DOI: 10.1111/j.1440-1746.2009.06159.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Portal-systemic collateral vascular resistance and vasoconstrictor responsiveness are crucial in portal hypertension and variceal bleeding control. Statins enhance vasodilators production, but their influence on collaterals is unknown. This study aimed to survey the effect of simvastatin on collaterals. METHODS Partially portal vein-ligated rats received oral simvastatin (20 mg/kg/day) or distilled water from -2 to +7 day of ligation. After hemodynamic measurements on the eighth postoperative day, baseline perfusion pressure (i.e. an index of collateral vascular resistance) and arginine vasopressin (AVP, 0.1 nM-0.1 microM) responsiveness were evaluated with an in situ perfusion model for collateral vascular beds. RT-PCR of endothelial NO synthase (eNOS), inducible NOS (iNOS), cyclooxygenase-1 (COX-1), COX-2, thromboxane A(2) synthase (TXA(2)-S) and prostacyclin synthase genes was performed in parallel groups for splenorenal shunt (SRS), the most prominent intra-abdominal collateral vessel. To determine the acute effects of simvastatin, collateral AVP response was assessed with vehicle or simvastatin. SRS RT-PCR of eNOS, iNOS, COX-1, COX-2 and TXA(2)-S, and measurements of perfusate nitrite/nitrate, 6-keto-PGF1(alpha) and TXB(2) levels were performed in parallel groups without AVP. RESULTS Acute simvastatin administration enhanced SRS eNOS expression and elevated perfusate nitrite/nitrate and 6-keto-PGF1(alpha) concentrations. Chronic simvastatin treatment reduced baseline collateral vascular resistance and portal pressure and enhanced SRS eNOS, COX-2 and TXA(2)-S mRNA expression. Neither acute nor chronic simvastatin administration influenced collateral AVP responsiveness. CONCLUSION Simvastatin reduces portal-systemic collateral vascular resistance and portal pressure in portal hypertensive rats. This may be related to the enhanced portal-systemic collateral vascular NO and prostacyclin activities.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Huang HC, Wang SS, Lee FY, Chang CC, Chang FY, Lin HC, Hou MC, Lee SD. Vasopressin response and shunting modulation in cirrhotic rats by chronic nitric oxide inhibition. J Gastroenterol Hepatol 2008; 23:e265-9. [PMID: 17764528 DOI: 10.1111/j.1440-1746.2007.05122.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Nitric oxide (NO) plays a significant role in the vascular hyposensitivity to vasoconstrictors in cirrhosis. Chronic NO inhibition improves the portal-systemic collateral responsiveness to arginine(8)-vasopressin (AVP) and ameliorates shunting degree in rats with prehepatic portal hypertension. This study investigated whether long-term NO inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME) enhances the collateral vascular responsiveness to AVP and alleviates the severity of shunting in cirrhotic rats. METHODS Bile duct-ligated (BDL) rats received L-NAME in tap water (25 mg/kg/day) or tap water only (control) for 1 week from the 36th day after BDL. On the 43rd day, the mean arterial pressure and portal pressure were measured. With an in situ perfusion model of portal-systemic collateral vasculature, different concentrations of AVP (10(-10)-10(-7) mol/L) with a constant flow rate (12 mL/min) were applied to assess the perfusion pressure changes of collaterals. In addition, flow pressure curves were obtained with different flow rates (6-18 mL/min): the slopes serve as indices of collateral vascular resistance and the higher resistance indicates less collateral. RESULTS The mean arterial pressure was significantly increased after L-NAME treatment (P < 0.05), whereas the heart rate and portal pressure were not significantly modified. As compared with the controls, the L-NAME group exerted significantly higher perfusion pressure changes to AVP at the concentrations of 3 x 10(-8), 10(-7) and 3 x 10(-7) mol/L. In addition, chronic L-NAME administration induced collateral vascular resistance elevation, suggesting the attenuation of portal-systemic shunting. CONCLUSION Chronic NO inhibition improves the collateral vascular responsiveness to AVP and ameliorates portal-systemic shunting in BDL cirrhotic rats.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Department of Medicine, Division of Gastroenterology, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang HC, Wang SS, Chen YC, Lee FY, Chang FY, Lin HC, Hou MC, Chang CC, Lee SD. Chronic cyclooxygenase blockade enhances the vasopressin responsiveness in collaterals of portal hypertensive rats. Scand J Gastroenterol 2006; 41:1440-5. [PMID: 17101575 DOI: 10.1080/00365520600735696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Collateral vascular responsiveness to vasoconstrictors may be crucial in the management of acute variceal bleeding. In an in situ perfusion model, arginine vasopressin (AVP) has been shown to cause a direct vasoconstrictive effect on portal-systemic collaterals and this effect is enhanced by preincubation of indomethacin (INDO). The purpose of this study was to investigate the effects of chronic INDO administration on the portal-systemic collateral responsiveness to AVP and the degree of portal-systemic shunting in portal hypertensive rats. MATERIAL AND METHODS Rats with partial portal vein ligation randomly received daily subcutaneous injections with INDO (5 mg/kg) or distilled water (control group) 2 days prior to until 7 days after ligation. Systemic and portal hemodynamics was evaluated on the 8th day. Using an in situ collateral perfusion model, AVP (10(-10)-10(-7) M) at a constant flow rate (20 ml/min) was applied. In another series, Krebs solution with different flow rates (5-30 ml/min) was used to obtain flow-pressure curves: the slopes represent collateral vascular resistances--the higher resistances indicate fewer collaterals. RESULTS Mean arterial pressure and portal pressure were not significantly different between the INDO-treated group and the control group (p>0.05). In the first series of experiments, INDO treatment increased the collateral perfusion pressure to AVP at 10(-8) M, 3x10(-8) M, and 10(-7) M (p<0.05). In the second series, INDO did not change collateral vascular resistance, which suggests that the degree of shunting was not altered. CONCLUSIONS Chronic INDO treatment improves the collateral vascular responsiveness to AVP without ameliorating portal-systemic shunting in portal hypertensive rats.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Erario MA, Gonzales S, Romay S, Eizayaga FX, Castro JL, Lemberg A, Tomaro ML. Role of heme oxygenase/carbon monoxide pathway on the vascular response to noradrenaline in portal hypertensive rats. Clin Exp Pharmacol Physiol 2005; 32:196-201. [PMID: 15743403 DOI: 10.1111/j.1440-1681.2005.04171.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Portal hypertension (PH), a major syndrome in cirrhosis, producing hyperdynamic splanchnic circulation and hyperaemia. In order to elucidate the contribution of heme oxygenase to the vascular hyporeactivity, we assessed the activity of heme oxygenase-1 (HO-1), measured the in vivo pressure response to noradrenaline (NA) and investigated the effects of blocking the carbon monoxide (CO) and nitric oxide (NO) pathways in a prehepatic model of PH in rats. 2. Portal hypertension was induced by partial portal vein ligation (PPVL). Noradrenaline was injected intravenously. Liver, spleen and mesentery homogenates were prepared for measurement of HO-1 activity and expression. Four groups of rats were used: (i) a sham group; (ii) a PPVL group; (iii) a sham group pretreated with Zn-protoporphyrin IX (ZnPPIX); and (iv) a PPVL group pretreated with ZnPPIX. Each group was studied before and after treatment with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). 3. For basal pressures and the pressure response to NA, inhibition of CO and NO pathways by ZnPPIX and L-NAME, respectively, produced an increase in mean arterial pressure (MAP) in sham-operated and in PH rats. Similarly, when both inhibitors were used together in either sham or PPVL rats, a greater increase in MAP was observed. 4. These results, together with the increased HO-1 activity and expression only in the PH group, have led us to suggest that the heme oxygenase/CO pathway is involved in the vascular response to NA in PH rats.
Collapse
Affiliation(s)
- M A Erario
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
10
|
Izzet T, Osman K, Ethem U, Nihat Y, Ramazan K, Mustafa D, Hafize U, Riza KA, Birsen A, Habibe G, Seval A, Gonul S. Oxidative stress in portal hypertension-induced rats with particular emphasis on nitric oxide and trace metals. World J Gastroenterol 2005; 11:3570-3. [PMID: 15962377 PMCID: PMC4315963 DOI: 10.3748/wjg.v11.i23.3570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the oxidative-stress-related changes in rats with portal hypertension with particular emphasis on nitric oxide (NO) and trace metals.
METHODS: Cirrhosis was induced by partial portal vein ligation (PVL) in Wistar rats. The lipid peroxidation marker (malondialdehyde, MDA), antioxidant defense enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and agents known to have antioxidant features including nitric oxide (NO), zinc (Zn), copper (Cu) were determined both in serum and in liver tissue at 4 wk after surgery in PVL and sham-operated rats. Portal pressure of all experimental animals was measured. MDA was detected by thiobarbituric acid reactivity assay. SOD activity was determined by inhibition of nitroblue tetrazolium reduction with xanthine/xanthine oxidase used as a superoxide generator. CAT activity was determined by the breakdown of hydrogen peroxide. GSH concentrations were measured by using metaphosphoric acid for protein precipitation and 5’-5’-dithio-bis-2-nitrobenzoic acid for color development. NO was detected by the Griess method after reduction of nitrate to nitrite with nitrate reductase, and the concentrations of Zn and Cu were measured by a Shimadzu 680 AA atomic absorption spectrometer. Histopathological confirmation was done under light microscope. Statistical analyses were done by Student’s t-test, and significance of the difference was tested by the unpaired Mann-Whitney test. P<0.05 was considered statistically significant.
RESULTS: Histopathological studies confirmed PVL-induced cirrhotic changes. There was a statistically significant difference in portal pressure between PVL and control groups (P<0.001). The results showed significant increases in the levels of MDA and NO in both tissue and serum (P<0.05 and P<0.001, respectively in tissue; P<0.001 for each in serum), and Zn only in tissue (P<0.001) in rats with PVL compared with sham-operated rats. Besides, PVL rats exhibited reduced plasma and tissue GSH, CAT, SOD (P<0.001 for each). Serum and tissue Cu concentration did not change.
CONCLUSION: Our findings suggest that PVL in rats induces important biochemical and molecular changes related to oxidative stress in the liver.
Collapse
Affiliation(s)
- Titiz Izzet
- Department of Surgery, Haydarpasa Numune Training and Research Hospital and Department of Surgery, Cerrahpasa Faculty of Medicine, Istanbul University, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chang CC, Huang HC, Wang SS, Lee FY, Chang FY, Lin HC, Hou MC, Lee SD. Involvement of constitutive nitric oxide synthase in the portal-systemic collaterals of portal hypertensive rats. J Chin Med Assoc 2005; 68:245-9. [PMID: 15984816 DOI: 10.1016/s1726-4901(09)70144-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Recent studies have shown that endothelial nitric oxide (NO) is involved in modulating the vascular response to vasoconstrictors in portal-systemic collaterals of portal hypertensive rats. This study investigated which isoform of NO synthase is involved in the collateral circulation of portal hypertensive rats. METHODS The relaxation response to acetylcholine (10(-8) M, 10(-7) M and 10(-6) M) in norepinephrine (NE)-preconstricted portal-systemic collaterals was investigated after incubation with vehicle (Krebs solution), a preferential inducible NO synthase inhibitor (aminoguanidine [AG]), or a non-selective NO synthase inhibitor (Nomega-nitro-L-arginine [NNA]), in rats with partial portal vein ligation. Mean arterial pressure was measured before the perfusion experiments. RESULTS Bodyweight and mean arterial pressure before the perfusion studies were similar in the vehicle, AG and NNA groups. Preincubation with NNA, but not AG, produced a significant increase in baseline perfusion pressure compared with the vehicle group (p < 0.05). The increase in perfusion pressure in response to NE was enhanced in the presence of NNA (p < 0.05), but not AG. In addition, preincubation with NNA, but not AG, significantly suppressed acetylcholine-induced relaxation in the portal-systemic collaterals (p < 0.05). CONCLUSION These results suggest that constitutive, rather than inducible, NO synthase is involved in the vascular response to vasoconstrictors in the portal-systemic collaterals of portal hypertensive rats.
Collapse
Affiliation(s)
- Ching-Chih Chang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Westphal M, Traber LD, Enkhbaatar P, Morita N, Traber DL. Chronic inhibition of nitric oxide synthase and increased vascular responsiveness to vasopressin: what is the link? J Hepatol 2004; 41:169-70. [PMID: 15246227 DOI: 10.1016/j.jhep.2004.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Tuteja N, Chandra M, Tuteja R, Misra MK. Nitric Oxide as a Unique Bioactive Signaling Messenger in Physiology and Pathophysiology. J Biomed Biotechnol 2004; 2004:227-237. [PMID: 15467163 PMCID: PMC555773 DOI: 10.1155/s1110724304402034] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is an intra- and extracellular messenger that mediates diverse signaling pathways in target cells and is known to play an important role in many physiological processes including neuronal signaling, immune response, inflammatory response, modulation of ion channels, phagocytic defense mechanism, penile erection, and cardiovascular homeostasis and its decompensation in atherogenesis. Recent studies have also revealed a role for NO as signaling molecule in plant, as it activates various defense genes and acts as developmental regulator. In plants, NO can also be produced by nitrate reductase. NO can operate through posttranslational modification of proteins (nitrosylation). NO is also a causative agent in various pathophysiological abnormalities. One of the very important systems, the cardiovascular system, is affected by NO production, as this bioactive molecule is involved in the regulation of cardiovascular motor tone, modulation of myocardial contractivity, control of cell proliferation, and inhibition of platelet activation, aggregation, and adhesion. The prime source of NO in the cardiovascular system is endothelial NO synthase, which is tightly regulated with respect to activity and localization. The inhibition of chronic NO synthesis leads to neurogenic and arterial hypertensions, which later contribute to development of myocardial fibrosis. Overall, the modulation of NO synthesis is associated with hypertension. This review briefly describes the physiology of NO, its synthesis, catabolism, and targeting, the mechanism of NO action, and the pharmacological role of NO with special reference to its essential role in hypertension.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- *Narendra Tuteja:
| | - Mahesh Chandra
- Department of Medicine, King George's Medical University,
Lucknow 226003, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|