1
|
Mahajan V, Gaymalov Z, Alakhova D, Gupta R, Zucker IH, Kabanov AV. Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials 2015; 75:58-70. [PMID: 26480472 DOI: 10.1016/j.biomaterials.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
Intramuscular administration of plasmid DNA (pDNA) with non-ionic Pluronic block copolymers increases gene expression in injected muscles and lymphoid organs. We studied the role of immune cells in muscle transfection upon inflammation. Local inflammation in murine hind limb ischemia model (MHLIM) drastically increased DNA, RNA and expressed protein levels in ischemic muscles injected with pDNA/Pluronic. The systemic inflammation (MHLIM or peritonitis) also increased expression of pDNA/Pluronic in the muscles. When pDNA/Pluronic was injected in ischemic muscles the reporter gene, Green Fluorescent Protein (GFP) co-localized with desmin(+) muscle fibers and CD11b(+) macrophages (MØs), suggesting transfection of MØs along with the muscle cells. P85 enhanced (∼ 4 orders) transfection of MØs with pDNA in vitro. Moreover, adoptively transferred MØs were shown to pass the transgene to inflamed muscle cells in MHLIM. Using a co-culture of myotubes (MTs) and transfected MØs expressing a reporter gene under constitutive (cmv-luciferase) or muscle specific (desmin-luciferase) promoter we demonstrated that P85 enhances horizontal gene transfer from MØ to MTs. Therefore, MØs can play an important role in muscle transfection with pDNA/Pluronic during inflammation, with both inflammation and Pluronic contributing to the increased gene expression. pDNA/Pluronic has potential for therapeutic gene delivery in muscle pathologies that involve inflammation.
Collapse
Affiliation(s)
- Vivek Mahajan
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Zagit Gaymalov
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Daria Alakhova
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Richa Gupta
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia.
| |
Collapse
|
2
|
Muraca M. Evolving concepts in cell therapy of liver disease and current clinical perspectives. Dig Liver Dis 2011; 43:180-7. [PMID: 20869923 DOI: 10.1016/j.dld.2010.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/18/2010] [Indexed: 02/08/2023]
Abstract
The clinical use of cells for the treatment of liver disease is not a mere hypothesis. Indeed, it has been known for more than 30 years that, following intraportal infusion, exogenous hepatocytes isolated from a donor liver engraft into the recipient hepatic parenchyma and express metabolic activity. These experimental results encouraged pilot clinical trials using hepatocytes transplantation to treat a variety of liver diseases. More recently, the discovery of liver stem/progenitor cells further fueled the interest in the field. However, it appears that successful liver cell therapy will require better understanding of the mechanisms governing liver regeneration and of their implication in cell transplantation. This review summarizes some recent advances in the field in a bench-to-bedside perspective.
Collapse
Affiliation(s)
- Maurizio Muraca
- Department of Laboratory Medicine, IRCCS Ospedale Bambino Gesù, Rome, Italy.
| |
Collapse
|