1
|
Bachetti T, Zanni ED, Adamo A, Rosamilia F, Sechi MM, Solla P, Bozzo M, Ceccherini I, Sechi G. Beneficial Effect of Phenytoin and Carbamazepine on GFAP Gene Expression and Mutant GFAP Folding in a Cellular Model of Alexander's Disease. Front Pharmacol 2021; 12:723218. [PMID: 34950024 PMCID: PMC8688807 DOI: 10.3389/fphar.2021.723218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Alexander’s disease (AxD) is a rare, usually relentlessly progressive disorder of astroglial cells in the central nervous system related to mutations in the gene encoding the type III intermediate filament protein, glial fibrillary acidic protein (GFAP). The pathophysiology of AxD is only partially understood. Available data indicate that an excessive GFAP gene expression may play a role. In particular, a “threshold hypothesis” has been reported, suggesting that mutant GFAP representing about 20% of the total cellular GFAP should be sufficient to cause disease. Thus, strategies based on reducing cellular mutant GFAP protein levels and/or activating biological processes involved in the correct protein folding could be effective in counteracting the toxic effect of misfolded GFAP. Considering that clomipramine (CLM), which has been selected by a wide small molecules screening as the greatest inhibitory potential drug against GFAP expression, is contraindicated because of its proconvulsant activity in the infantile form of AxD, which is also characterized by the occurrence of epileptic seizures, two powerful antiepileptic agents, carbamazepine (CBZ) and phenytoin (PHT), which share specific stereochemical features in common with CLM, were taken into consideration in a reliable in vitro model of AxD. In the present work, we document for the first time that CBZ and PHT have a definite inhibitory effect on pathological GFAP cellular expression and folding. Moreover, we confirm previous results of a similar beneficial effect of CLM. In addition, we have demonstrated that CBZ and CLM play a refolding effect on mutant GFAP proteins, likely ascribed at the induction of CRYAB expression, resulting in the decrease of mutant GFAP aggregates formation. As CBZ and PHT are currently approved for use in humans, their documented effects on pathological GFAP cellular expression and folding may indicate a potential therapeutic role as disease-modifying agents of these drugs in the clinical management of AxD, particularly in AxD patients with focal epilepsy with and without secondary generalization.
Collapse
Affiliation(s)
- Tiziana Bachetti
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy.,Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Eleonora Di Zanni
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Annalisa Adamo
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - Francesca Rosamilia
- Dipartimento di Scienze della Salute, DISSAL, Università di Genova, Genova, Italy
| | - M Margherita Sechi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| | - Matteo Bozzo
- Laboratorio di Neurobiologia dello Sviluppo, DISTAV, Università di Genova, Genova, Italy
| | - Isabella Ceccherini
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Gaslini, Genova, Italy
| | - GianPietro Sechi
- Department of Medical, Surgical and Experimental Sciences (G.P.S.; P.S.), University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
Ruzza P, Vitale RM, Hussain R, Biondi B, Amodeo P, Sechi G, Siligardi G. Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochim Biophys Acta Gen Subj 2016; 1860:2239-48. [DOI: 10.1016/j.bbagen.2016.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/14/2016] [Accepted: 04/27/2016] [Indexed: 01/28/2023]
|
3
|
Ruzza P, Siligardi G, Hussain R, Marchiani A, Islami M, Bubacco L, Delogu G, Fabbri D, Dettori MA, Sechi M, Pala N, Spissu Y, Migheli R, Serra PA, Sechi G. Ceftriaxone blocks the polymerization of α-synuclein and exerts neuroprotective effects in vitro. ACS Chem Neurosci 2014; 5:30-8. [PMID: 24099687 DOI: 10.1021/cn400149k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The β-lactam antibiotic ceftriaxone was suggested as a therapeutic agent in several neurodegenerative disorders, either for its ability to counteract glutamate-mediated toxicity, as in cerebral ischemia, or for its ability to enhance the degradation of misfolded proteins, as in Alexander's disease. Recently, the efficacy of ceftriaxone in neuroprotection of dopaminergic neurons in a rat model of Parkinson's disease was documented. However, which characteristics of ceftriaxone mediate its therapeutic effects remains unclear. Since, at the molecular level, neuronal α-synuclein inclusions and pathological α-synuclein transmission play a leading role in initiation of Parkinson-like neurodegeneration, we thought of investigating, by circular dichroism spectroscopy, the capability of ceftriaxone to interact with α-synuclein. We found that ceftriaxone binds with good affinity to α-synuclein and blocks its in vitro polymerization. Considering this finding, we also documented that ceftriaxone exerts neuroprotective action in an in vitro model of Parkinson's disease. Our data, in addition to the findings on neuroprotective activity of ceftriaxone on Parkinson-like neurodegeneration in vivo, indicates ceftriaxone as a potential agent in treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Anna Marchiani
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Mehmet Islami
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Giovanna Delogu
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Davide Fabbri
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Maria A. Dettori
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Mario Sechi
- Department
of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Nicolino Pala
- Department
of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Ylenia Spissu
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - Rossana Migheli
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - Pier A. Serra
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - GianPietro Sechi
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
4
|
Ceftriaxone for Alexander's Disease: A Four-Year Follow-Up. JIMD Rep 2012; 9:67-71. [PMID: 23430549 DOI: 10.1007/8904_2012_180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 02/06/2023] Open
Abstract
In 2010, we reported the successful clinical outcome related to a 20-month course of intravenous, cyclical ceftriaxone, in a patient with adult-onset Alexander's disease. We now provide evidence that the progression of the patient's signs/symptoms was halted and reversed with a 4-year-long extension of the trial.The patient's clinical signs/symptoms were evaluated before the start and every 6 months for 6 years. For the early 2 years, without therapy, and for the following 4 years, after intravenous ceftriaxone 2 g daily, for 3 weeks monthly during the initial 4 months, then for 15 days monthly.Gait ataxia and dysarthria were assessed clinically on a 0 to 4 scale. Palatal myoclonus and nystagmus/oscillopsia were monitored by videotape and a self-evaluation scale. The degree of disability, measured by a modified Rankin scale, and the brain MRI were periodically evaluated.Before ceftriaxone therapy, in a 2-year period, gait ataxia and dysarthria worsened from mild to marked, palatal myoclonus spread from the soft palate to lower facial muscles, and the patient complained of oscillopsia. After 4 years of ceftriaxone therapy, gait ataxia and dysarthria improved, from marked to mild at clinical rating scales. The palatal myoclonus was undetectable; the patient did not complained of oscillopsia and declared a progressively better quality of life. Ceftriaxone was safe.This case report provides Class IV evidence that intravenous cycles of ceftriaxone may halt and/or reverse the progression of neurodegeneration in patients with adult-onset Alexander's disease and may significantly improve their quality of life.
Collapse
|