1
|
Zhang YW, Hou LS, Xing JH, Zhang TR, Zhou SY, Zhang BL. Two-Membrane Hybrid Nanobiomimetic Delivery System for Targeted Autophagy Inhibition of Activated Hepatic Stellate Cells To Synergistically Treat Liver Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37899504 DOI: 10.1021/acsami.3c11046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Liver fibrosis is one of the most common and highly prevalent chronic liver diseases caused by multiple pathogenic factors, and there is still no effective therapeutic drugs up to now. The activated hepatic stellate cells (aHSCs) are the main executor in liver fibrosis, and the autophagy plays a key role in the proliferation and differentiation of aHSCs, which promotes the development of liver fibrosis. However, autophagy has the opposite effect on the different kinds of liver cells in the development of liver fibrosis, and the clinical treatment has been limited by the poor selectivity and inefficient drug delivery to aHSCs. Therefore, in this study, a liposome (Lip) and exosome (Exo) two-membrane hybrid nanobiomimetic delivery system HCQ@VA-Lip-Exo was designed, which was modified by vitamin A (VA) to target the aHSCs and carried the autophagy inhibitor hydroxychloroquine (HCQ). The experimental results in vitro and in vivo revealed that the constructed aHSC-targeted hybrid delivery system HCQ@VA-Lip-Exo combined with the benefits of HCQ and exosomes derived from bone marrow mesenchymal stem cells. HCQ@VA-Lip-Exo had good aHSC-targeted delivery ability, effective autophagy inhibition, and synergistical anti-liver fibrosis performance, thus reducing the production and deposition of the extracellular matrix to inhibit the liver fibrosis. This combined strategy provided a potential idea for the construction and clinical application of a two-membrane hybrid delivery system as an effective targeted therapy of liver fibrosis.
Collapse
Affiliation(s)
- Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jie-Hua Xing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Tang-Rui Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
2
|
Anwar C, Tsai ML, Chen BN, Hsu LY, Lai CS. Molecular mechanisms of Agardhiella subulata attenuates hepatic fibrosis by modulating hepatic stellate cell activation via the reduction of autophagy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Potential Therapeutic Targets and Promising Agents for Combating NAFLD. Biomedicines 2022; 10:biomedicines10040901. [PMID: 35453652 PMCID: PMC9032837 DOI: 10.3390/biomedicines10040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), is a growing cause of liver cirrhosis and liver cancer worldwide because of the global increases in obesity, dyslipidemia, hypertension, and type 2 diabetes mellitus. Contrary to the advancements in therapies for viral hepatitis, effective treatments remain unestablished for patients with NAFLD. NAFLD, including NASH, is characterized by steatosis, inflammation, hepatic necrosis, and fibrosis. Despite our understanding of its pathophysiology, there are currently no effective treatments for NAFLD. In this review, we provide an update on the known pathophysiological mechanisms involved in the development of NAFLD and the role of hepatic stellate cells, and summarize the potential therapeutic agents, including natural products, for NAFLD.
Collapse
|
4
|
Kataoka S, Umemura A, Okuda K, Taketani H, Seko Y, Nishikawa T, Yamaguchi K, Moriguchi M, Kanbara Y, Arbiser JL, Shima T, Okanoue T, Itoh Y. Honokiol Acts as a Potent Anti-Fibrotic Agent in the Liver through Inhibition of TGF-β1/SMAD Signaling and Autophagy in Hepatic Stellate Cells. Int J Mol Sci 2021; 22:ijms222413354. [PMID: 34948151 PMCID: PMC8705910 DOI: 10.3390/ijms222413354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.
Collapse
Affiliation(s)
- Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
- Correspondence: ; Tel.: +81-75-251-5332; Fax: +81-75-251-5348
| | - Keiichiro Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Hiroyoshi Taketani
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Taichiro Nishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Yoshihiro Kanbara
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Jack L. Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Veterans Affairs Medical Center, Decatur, GA 30322, USA
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| |
Collapse
|
5
|
Wang Y, Jiang Y, Zhao L. miRNA-200b improves hepatic fibrosis induced by CCL 4 by regulating toll-like receptor 4 in mice. J Cell Biochem 2019; 120:13254-13261. [PMID: 30924172 DOI: 10.1002/jcb.28599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
To study the effect of miRNA-200b on hepatic fibrosis induced by CCl4 in mice. The C59BL/6 mice were randomly divided into three groups (normal control [NC], CCLR model [Model], and CCl 4 + miRNA-200b [miRNA]). The hepatic fibrosis was induced by CCl 4 injected subcutaneously twice per week in Model and miRNA groups. After 6 weeks building model, the mice of miRNA group were injected the miRNA-200b from caudal vein twice per week. The mice of Model and miRNA groups were continuously fed for 3 weeks. The IL-1β, IL-6, and TNF-α concentrations of serum were measured by enzyme-linked immunosorbent assay. The hepatic tissues of difference groups were observed by hematoxylin and eosin (H&E) staining, sirius red staining, Masson staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay and measured toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) proteins expressions by western blot assay. The correlation between miRNA-200b and TLR4 were analyzed by dual luciferase target assay. Compared with NC group, the interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) concentrations of Model group were significantly upregulated (P < 0.05, respectively). With miRNA-200b overexpression, the IL-1β, IL-6, and TNF-α concentrations were significantly suppressed (P < 0.05, respectively). The pathologies were improved by H&E staining, sirius red staining, and Masson staining; meanwhile, the hepatic cell apoptosis rate was significantly suppressed (P < 0.05). The TLR4 and NF-κB protein expressions of miRNA group were significantly suppressed compared with the Model group (P < 0.05, respectively). By dual luciferase target assay, the TLR4 was a target gene of miRNA-200b. The miRNA-200b upregulation improved hepatic fibrosis induced by CCl 4 via regulation of TLR4 in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| | - Ying Jiang
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| | - Lianfeng Zhao
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| |
Collapse
|
6
|
Yu K, Li N, Cheng Q, Zheng J, Zhu M, Bao S, Chen M, Shi G. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J Mol Med (Berl) 2018; 96:65-74. [PMID: 29051972 DOI: 10.1007/s00109-017-1593-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022]
Abstract
Activation of hepatic stellate cell (HSC), which is the main source of extracellular matrix, plays a pivotal role in liver fibrogenesis. Autophagy of hepatic stellate cell has been recently implicated in liver fibrosis, but the regulation of hepatic stellate cell autophagy during this process remains poorly understood. Here, we first identified miR-96-5p as an aberrantly expressed miRNA in fibrotic liver tissues. Next, we transfected miR-96-5p mimic into human hepatic stellate cell line LX-2 and observed decreased protein and mRNA levels of α-SMA and Col1A1. In addition, transfection of miR-96-5p mimic significantly reduced autophagy activity of LX-2 cells, while transfection of miR-96-5p inhibitor promoted LX-2 cell autophagy. Moreover, autophagy-related protein 7 (ATG7) was predicted as a potential target of miR-96-5p and luciferase assay confirmed its direct interaction with miR-96-5p. Finally, reintroduction of ATG7 into LX-2 cells reversed miR-96-5p-mediated inhibition of autophagy as well as α-SMA and Col1A1 expression. In conclusion, we demonstrated that miR-96-5p can inhibit hepatic stellate cell activation by blocking autophagy via ATG7. These findings provide new insight into the development of miRNA-based anti-fibrotic strategies. KEY MESSAGES • Altered miRNA expression profile is observed in fibrotic liver tissues. • miR-96-5p can inhibit HSC activation. • Autophagy of HSC is repressed by miR-96-5p during activation. • ATG7 is a direct target of miR-96-5p. • ATG7 can rescue miR-96-5p-mediated inhibition of autophagy and HSC activation.
Collapse
Affiliation(s)
- Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Suxia Bao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
7
|
Bozaykut P, Sahin A, Karademir B, Ozer NK. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev 2016; 157:17-29. [PMID: 27393639 DOI: 10.1016/j.mad.2016.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
|
8
|
Mao YQ, Fan XM. Autophagy: A new therapeutic target for liver fibrosis. World J Hepatol 2015; 7:1982-1986. [PMID: 26261688 PMCID: PMC4528272 DOI: 10.4254/wjh.v7.i16.1982] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a wound-healing response to liver injury and the result of imbalance of extracellular matrix (ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM can lead to end-stage liver disease. Although significant progress has been achieved in elucidating the mechanisms of fibrogenesis, effective anti-fibrotic strategies are still lacking. Autophagy is an intracellular process of self-digestion of defective organelles to provide material recycling or energy for cell survival. Autophagy has been implicated in the pathophysiology of many human disorders including hepatic fibrosis. However, the exact relationships between autophagy and hepatic fibrosis are not totally clear and need further investigations. A new therapeutic target for liver fibrosis could be developed with a better understanding of autophagy.
Collapse
|
9
|
|
10
|
Deng J, Huang Q, Wang Y, Shen P, Guan F, Li J, Huang H, Shi C. Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 2014; 454:328-34. [PMID: 25450397 DOI: 10.1016/j.bbrc.2014.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
The role of autophagy in Hif-1α modulated activation of hepatic stellate cells was illustrated in current work. Autophagy markers were determined in livers of Schistosoma japonicum infected mice and hypoxia or LPS treated human hepatic stellate cell, LX-2 cells. The action of Hif-1 to autophagy was defined as increase of autophagy markers was significantly suppressed in Hif-1α siRNA transfected cells upon hypoxia or LPS stimulation. The function of autophagy in activation of LX-2 cells was assessed as increase of activation markers was blocked using autophagy inhibitors under hypoxia and LPS stimulation. Conclusively, Hif-1α regulates activation of hepatic stellate cell by modulating autophagy.
Collapse
Affiliation(s)
- Jing Deng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qin Huang
- Department of Medical Rehabilitation, Union Hospital, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yueqin Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Pei Shen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fei Guan
- Department of Parasitology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hanju Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|