1
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2021; 57:457-463. [PMID: 35698951 DOI: 10.1016/j.arbr.2020.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/11/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
2
|
Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, Muñoz-Callejas A, Sánchez E, Esquinas C, Bustamante A, Cadenas S, Curi S, Lázaro L, Martínez MT, Rodríguez E, Miravitlles M, Torres-Duran M, Herrero I, Michel FJ, Castillo S, Hernández-Pérez JM, Blanco I, Casas F, Martínez-Delgado B. miR-320c Regulates SERPINA1 Expression and Is Induced in Patients With Pulmonary Disease. Arch Bronconeumol 2020; 57:S0300-2896(20)30084-3. [PMID: 32439252 DOI: 10.1016/j.arbres.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency (AATD) is a genetic condition resulting in lung and liver disease with a great clinical variability. MicroRNAs have been identified as disease modifiers; therefore miRNA deregulation could play an important role in disease heterogeneity. Members of miR-320 family are involved in regulating of multiple processes including inflammation, and have potential specific binding sites in the 3'UTR region of SERPINA1 gene. In this study we explore the involvement of miR-320c, a member of this family, in this disease. METHODS Firstly in vitro studies were carried out to demonstrate regulation of SERPINA1 gene by miR-320. Furthermore, the expression of miR-320c was analyzed in the blood of 98 individuals with different AAT serum levels by using quantitative PCR and expression was correlated to clinical parameters of the patients. Finally, HL60 cells were used to analyze induction of miR-320c in inflammatory conditions. RESULTS Overexpression of miR-320 members in human HepG2 cells led to inhibition of SERPINA1 expression. Analysis of miR-320c expression in patient's samples revealed significantly increased expression of miR-320c in individuals with pulmonary disease. Additionally, HL60 cells treated with the pro-inflammatory factor lipopolysaccharide (LPS) showed increase in miR-320c expression, suggesting that miR-320c responds to inflammation. CONCLUSION Our findings demonstrate that miR-320c inhibits SERPINA1 expression in a hepatic cell line and its levels in blood are associated with lung disease in a cohort of patients with different AAT serum levels. These results suggest that miR-320c can play a role in AAT regulation and could be a biomarker of inflammatory processes in pulmonary diseases.
Collapse
Affiliation(s)
- Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz Lara
- Respiratory Medicine Department, Coventry University Hospital, Coventry, UK
| | - Gema Gómez-Mariano
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Selene Martínez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Vázquez-Domínguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Álvaro Otero-Sobrino
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cristina Esquinas
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain; Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, Spain
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Spain
| | - Sergio Curi
- Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lourdes Lázaro
- Servicio de Neumología, Complejo Asistencial Universitario de Burgos, Spain
| | | | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - María Torres-Duran
- Servicio de Neumología, Hospital Álvaro Cunqueiro, EOXI Vigo, Pneumovigo I+i, IIS Galicia Sur, Spain
| | - Inés Herrero
- Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Silvia Castillo
- Unidad de Neumología infantil y Fibrosis quística, Hospital Clínico Universitario de Valencia, Spain
| | | | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina (REDAAT), Fundación Española de Pulmón, Respira, SEPAR, Barcelona, Spain
| | - Francisco Casas
- Servicio de Neumología, Hospital Universitario San Cecilio, Granada, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
3
|
|
4
|
Pye A, Turner AM. Experimental and investigational drugs for the treatment of alpha-1 antitrypsin deficiency. Expert Opin Investig Drugs 2019; 28:891-902. [PMID: 31550938 DOI: 10.1080/13543784.2019.1672656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Alpha-1 antitrypsin deficiency (AATD) is most often associated with chronic lung disease, early onset emphysema, and liver disease. The standard of care in lung disease due to AATD is alpha-1 antitrypsin augmentation but there are several new and emerging treatment options under investigation for both lung and liver manifestations. Areas covered: We review therapeutic approaches to lung and liver disease in alpha-1 antitrypsin deficiency (AATD) and the agents in clinical development according to their mode of action. The focus is on products in clinical trials, but data from pre-clinical studies are described where relevant, particularly where progression to trials appears likely. Expert opinion: Clinical trials directed at lung and liver disease separately are now taking place. Multimodality treatment may be the future, but this could be limited by treatment costs. The next 5-10 years may reveal new guidance on when to use therapeutics for slowing disease progression with personalized treatment regimes coming to the forefront.
Collapse
Affiliation(s)
- Anita Pye
- Institute of Applied Health Research, University of Birmingham , Birmingham , UK
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
5
|
Trinh HN, Jang SH, Lee C. Functional characterization of a SNP (F51S) found in human alpha 1-antitrypsin. Mol Genet Genomic Med 2019; 7:e819. [PMID: 31251477 PMCID: PMC6687665 DOI: 10.1002/mgg3.819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/16/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Alpha 1-antitrypsin (A1AT) deficiency is related to lung and liver diseases, including pulmonary emphysema and liver cirrhosis in humans. Genetic variations including single nucleotide polymorphisms (SNPs) of SERPINA1 are responsible for A1AT deficiency, but the characteristics of the SNPs are not well-understood. Here, we investigated the features of a rare SNP (F51S) of A1AT, which introduces an additional N-glycosylation site in the N-terminal region of A1AT. METHODS We evaluated the F51S variant compared with the wild-type (WT) A1AT with regard to expression in CHO-K1 cells, trypsin inhibitory activity, polymerization, and thermal stability. RESULTS The recombinant F51S protein expressed in CHO-K1 cells was mostly retained inside cells. The F51S variant had trypsin inhibitory activity, but reduced thermal stability compared with the WT A1AT. The native acrylamide gel data showed that F51S tended to prevent polymerization of A1AT. CONCLUSION The results of this study indicate that Phe51 and the surrounding hydrophobic residue cluster plays an important role in the conformation and secretion of A1AT and suggest the harmful effects of a rare F51S SNP in human health.
Collapse
Affiliation(s)
- Hong-Nhung Trinh
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - Sei-Heon Jang
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| | - ChangWoo Lee
- Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
6
|
Callea F, Giovannoni I, Francalanci P, Boldrini R, Faa G, Medicina D, Nobili V, Desmet VJ, Ishak K, Seyama K, Bellacchio E. Mineralization of alpha-1-antitrypsin inclusion bodies in Mmalton alpha-1-antitrypsin deficiency. Orphanet J Rare Dis 2018; 13:79. [PMID: 29769092 PMCID: PMC5956786 DOI: 10.1186/s13023-018-0821-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Background Alpha-1-antitrypsin (AAT) deficiency (AATD) of Z, Mmalton, Siiyama type is associated with liver storage of the mutant proteins and liver disease. The Z variant can be diagnosed on isoelectric focusing (IEF) while Mmalton and Siiyama may be missed or misdiagnosed with this technique. Therefore, molecular analysis is mandatory for their characterization. In particular, that holds true for the Mmalton variant as on IEF profile it resembles the wild M2 subtype. Methods This is a retrospective analysis involving review of medical records and of liver biopsy specimens from a series of Mmalton, Z and Siiyama Alpha-1-antitrypsin deficiency patients. The review has been implemented by additional histological stains, electron microscopic observations and 3-D modeling studies of the sites of the mutations. Results Z, Mmalton and Siiyama liver specimen contained characteristic intrahepatocytic PAS-D globules. The globules differed in the three variants as only Mmalton cases showed dark basophilic precipitates within the AAT inclusions. The precipitates were visualized in haematoxylin-eosin (H.E.) stained preparations and corresponded to calcium precipitates as demonstrated by von Kossa staining. On immunohistochemistry, ZAAT inclusions were stained by polyclonal as well as monoclonal noncommercial anti-AAT antibody (AZT11), whilst Mmalton and Siiyama inclusion bodies remained negative with the monoclonal anti-Z antibody. 3-D protein analysis allowed to predict more severe misfolding of the Mmalton molecule as compared to Z and Siiyama that could trigger anomalous interaction with endoplasmic reticulum chaperon proteins, namely calcium binding proteins. Conclusions Mmalton AAT inclusion bodies contain calcium precipitates inside them that allow the differential diagnosis with Siiyama and ZAAT inclusions in routine histological sections. The study has confirmed the specificity of the monoclonal AZT11 for the Z mutant. Thus, the combination of these two features is crucial for the distinction between the three variants and for predicting the genotype, whose confirmation would definitely require molecular analysis. Our study provides new data on the pathomorphogenesis of Mmalton inclusion bodies whose mineralization could play a central role in disease pathogenesis of Mmalton that is distinct from the Z and Siiyama variants. Calcium is known to be a major effector of cell death either via the increased intracellular concentration or the alteration of homeostasis.
Collapse
Affiliation(s)
- Francesco Callea
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Isabella Giovannoni
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Renata Boldrini
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Gavino Faa
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Daniela Medicina
- Department of Pathology Spedali Civili, University of Brescia, Brescia, Italy
| | - Valerio Nobili
- Hepato-metabolic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Kamal Ishak
- Armed Forces Institute of Pathology, Washington, USA
| | - Kuniaki Seyama
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Emanuele Bellacchio
- Genetic and Rare Diseases, Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Kandregula CAB, Smilin Bell Aseervatham G, Bentley GT, Kandasamy R. Alpha-1 antitrypsin: Associated diseases and therapeutic uses. Clin Chim Acta 2016; 459:109-116. [PMID: 27259467 DOI: 10.1016/j.cca.2016.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Chaya A Babu Kandregula
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - G Smilin Bell Aseervatham
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Gary T Bentley
- Department of Internal Medicine, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Ruckmani Kandasamy
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
8
|
Berthelier V, Harris JB, Estenson KN, Baudry J. Discovery of an inhibitor of Z-alpha1 antitrypsin polymerization. PLoS One 2015; 10:e0126256. [PMID: 25961288 PMCID: PMC4427445 DOI: 10.1371/journal.pone.0126256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/31/2015] [Indexed: 11/25/2022] Open
Abstract
Polymerization of the Z variant alpha-1-antitrypsin (Z-α1AT) results in the most common and severe form of α1AT deficiency (α1ATD), a debilitating genetic disorder whose clinical manifestations range from asymptomatic to fatal liver and/or lung disease. As the altered conformation of Z-α1AT and its attendant aggregation are responsible for pathogenesis, the polymerization process per se has become a major target for the development of therapeutics. Based on the ability of Z-α1AT to aggregate by recruiting the reactive center loop (RCL) of another Z-α1AT into its s4A cavity, we developed a high-throughput screening assay that uses a modified 6-mer peptide mimicking the RCL to screen for inhibitors of Z-α1AT polymer growth. A subset of compounds from the Library of Pharmacologically Active Compounds (LOPAC) with molecular weights ranging from 300 to 700 Da, was used to evaluate the assay's capabilities. The inhibitor S-(4-nitrobenzyl)-6-thioguanosine was identified as a lead compound and its ability to prevent Z-α1AT polymerization confirmed by secondary assays. To further investigate the binding location of S-(4-nitrobenzyl)-6-thioguanosine, an in silico strategy was pursued and the intermediate α1AT M* state modeled to allow molecular docking simulations and explore various potential binding sites. Docking results predict that S-(4-nitrobenzyl)-6-thioguanosine can bind at the s4A cavity and at the edge of β-sheet A. The former binding site would directly block RCL insertion whereas the latter site would prevent β-sheet A from expanding between s3A/s5A, and thus indirectly impede RCL insertion. Altogether, our investigations have revealed a novel compound that inhibits the formation of Z-α1AT polymers, as well as in vitro and in silico strategies for identifying and characterizing additional blocking molecules of Z-α1AT polymerization.
Collapse
Affiliation(s)
- Valerie Berthelier
- Department of Medicine, University of Tennessee Health Science Center—Graduate School of Medicine, Knoxville, Tennessee, United States of America
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jason Brett Harris
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Kasey Noel Estenson
- Department of Medicine, University of Tennessee Health Science Center—Graduate School of Medicine, Knoxville, Tennessee, United States of America
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jerome Baudry
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
9
|
Abstract
Alpha-1-antitrypsin (α1AT) deficiency is a genetic disorder that manifests as pulmonary emphysema and liver cirrhosis. α1AT deficiency is the most common genetic cause of liver disease in children and also an underappreciated cause of liver disease in adults. The prevalence in the general population in Western Europe is approximately 1 in 2,000. The most common and severe deficiency allele is the Z variant (two alleles mutated). This variant is characterized by the accumulation of Z-α1AT polymers in the endoplasmic reticulum of hepatocytes leading to cell death and to a severe reduction of α1AT in the serum. The latter results in a loss of its antiprotease activity and its ability to protect lung tissue. Thus far, there are only very limited therapeutic options in α1AT deficiency. A more detailed understanding of the biology governing α1AT biogenesis is required in order to identify new pharmacological agents and biomarkers. This review will present current knowledge on α1AT deficiency and focus on recent discoveries and new strategies in the treatment of this disease.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
10
|
Turner AM. Alpha-1 antitrypsin deficiency: new developments in augmentation and other therapies. BioDrugs 2014; 27:547-58. [PMID: 23771682 DOI: 10.1007/s40259-013-0042-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha 1 antitrypsin deficiency (AATD) is a rare cause of chronic obstructive pulmonary disease. The lung disease is thought to be caused primarily by a lack of effective protection against the harmful effects of neutrophil elastase due to the low AAT levels in the lung. Patients may also develop liver disease due to polymerisation of AAT within hepatocytes. Consequently there has been much research over the years into AAT augmentation therapy in patients with lung disease, initially intravenously, and more recently in inhaled forms. This review article will discuss the role of augmentation therapy in AATD and the current status of recombinant AAT. The potential for other therapeutic strategies, such as blocking polymer formation, enhancing autophagy, gene therapy and stem cell-based treatment, will also be discussed more briefly.
Collapse
Affiliation(s)
- Alice M Turner
- QEHB Research Labs, University of Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK,
| |
Collapse
|
11
|
Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med Chem 2014; 6:1047-65. [DOI: 10.4155/fmc.14.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Misfolding and conformational diseases are increasing in prominence and prevalence. Both misfolding and ‘postfolding’ conformational mechanisms can contribute to pathogenesis and can coexist. The different contexts of folding and native state behavior may have implications for the development of therapeutic strategies. α1-antitrypsin deficiency illustrates how these issues can be addressed with therapeutic approaches to rescue folding, ameliorate downstream consequences of aberrant polymerization and/or maintain physiological function. Small-molecule strategies have successfully targeted structural features of the native conformer. Recent developments include the capability to follow solution behavior of α1-antitrypsin in the context of disease mutations and interactions with drug-like compounds. Moreover, preclinical studies in cells and organisms support the potential of manipulating cellular response repertoires to process misfolded and polymer states.
Collapse
|
12
|
Chang YP, Chu YH. Mixture-based combinatorial libraries from small individual peptide libraries: a case study on α1-antitrypsin deficiency. Molecules 2014; 19:6330-48. [PMID: 24840902 PMCID: PMC6271437 DOI: 10.3390/molecules19056330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022] Open
Abstract
The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.
Collapse
Affiliation(s)
- Yi-Pin Chang
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minhsiung, Chiayi 62102, Taiwan.
| |
Collapse
|
13
|
Alam S, Li Z, Atkinson C, Jonigk D, Janciauskiene S, Mahadeva R. Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:909-31. [PMID: 24592811 PMCID: PMC4098095 DOI: 10.1164/rccm.201308-1458oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Severe α1-antitrypsin deficiency caused by the Z variant (Glu342Lys; ZZ-AT) is a well-known genetic cause for emphysema. Although severe lack of antiproteinase protection is the critical etiologic factor for ZZ-AT-associated chronic obstructive pulmonary disease (COPD), some reports have suggested enhanced lung inflammation as a factor in ZZ-AT homozygotes. OBJECTIVES To provide molecular characterization of inflammation in ZZ-AT. METHODS Inflammatory cell and cytokine profile (nuclear factor-κB, IL-6, tumor necrosis factor-α), intracellular polymerization of Z-AT, and endoplasmic reticulum (ER) stress markers (protein kinase RNA-like ER kinase, activator transcription factor 4) were assessed in transgenic mice and transfected cells in response to cigarette smoke, and in explanted lungs from ZZ and MM individuals with severe COPD. MEASUREMENTS AND MAIN RESULTS Compared with M-AT, transgenic Z-AT mice lungs exposed to cigarette smoke had higher levels of pulmonary cytokines, neutrophils, and macrophages and an exaggerated ER stress. Similarly, the ER overload response was greater in lungs from ZZ-AT homozygotes with COPD, and was particularly found in pulmonary epithelial cells. Cigarette smoke increased intracellular Z-AT polymers, ER overload response, and proinflammatory cytokine release in Z-AT-expressing pulmonary epithelial cells, which could be prevented with an inhibitor of polymerization, an antioxidant, and an inhibitor of protein kinase RNA-like ER kinase. CONCLUSIONS We show here that aggregation of intracellular mutant Z-AT invokes a specific deleterious cellular inflammatory phenotype in COPD. Oxidant-induced intracellular polymerization of Z-AT in epithelial cells causes ER stress, and promotes excess cytokine and cellular inflammation. This pathway is likely to contribute to the development of COPD in ZZ-AT homozygotes, and therefore merits further investigation.
Collapse
Affiliation(s)
- Samuel Alam
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Zhenjun Li
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carl Atkinson
- Department of Microbiology and Immunology,
Medical University of South Carolina, Charleston, South Carolina; and
| | | | | | - Ravi Mahadeva
- Department of Medicine, University of
Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
14
|
Ghouse R, Chu A, Wang Y, Perlmutter DH. Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech 2014; 7:411-9. [PMID: 24719116 PMCID: PMC3974452 DOI: 10.1242/dmm.014092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder.
Collapse
Affiliation(s)
- Raafe Ghouse
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Andrew Chu
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Yan Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Guo S, Booten SL, Aghajan M, Hung G, Zhao C, Blomenkamp K, Gattis D, Watt A, Freier SM, Teckman JH, McCaleb ML, Monia BP. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest 2013; 124:251-61. [PMID: 24355919 DOI: 10.1172/jci67968] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 10/15/2013] [Indexed: 02/04/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.
Collapse
|
16
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Silverman GA, Pak SC, Perlmutter DH. Disorders of protein misfolding: alpha-1-antitrypsin deficiency as prototype. J Pediatr 2013; 163:320-6. [PMID: 23664631 PMCID: PMC3725216 DOI: 10.1016/j.jpeds.2013.03.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 02/06/2023]
|
18
|
Pastore N, Blomenkamp K, Annunziata F, Piccolo P, Mithbaokar P, Maria Sepe R, Vetrini F, Palmer D, Ng P, Polishchuk E, Iacobacci S, Polishchuk R, Teckman J, Ballabio A, Brunetti-Pierri N. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 2013; 5:397-412. [PMID: 23381957 PMCID: PMC3598080 DOI: 10.1002/emmm.201202046] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 12/16/2022] Open
Abstract
Alpha-1-anti-trypsin deficiency is the most common genetic cause of liver disease in children and liver transplantation is currently the only available treatment. Enhancement of liver autophagy increases degradation of mutant, hepatotoxic alpha-1-anti-trypsin (ATZ). We investigated the therapeutic potential of liver-directed gene transfer of transcription factor EB (TFEB), a master gene that regulates lysosomal function and autophagy, in PiZ transgenic mice, recapitulating the human hepatic disease. Hepatocyte TFEB gene transfer resulted in dramatic reduction of hepatic ATZ, liver apoptosis and fibrosis, which are key features of alpha-1-anti-trypsin deficiency. Correction of the liver phenotype resulted from increased ATZ polymer degradation mediated by enhancement of autophagy flux and reduced ATZ monomer by decreased hepatic NFκB activation and IL-6 that drives ATZ gene expression. In conclusion, TFEB gene transfer is a novel strategy for treatment of liver disease of alpha-1-anti-trypsin deficiency. This study may pave the way towards applications of TFEB gene transfer for treatment of a wide spectrum of human disorders due to intracellular accumulation of toxic proteins.
Collapse
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chang YP, Chu YH. Blocking formation of large protein aggregates by small peptides. Chem Commun (Camb) 2013; 49:4591-600. [DOI: 10.1039/c3cc37518h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J Biol Chem 2012; 287:38265-78. [PMID: 22995909 PMCID: PMC3488095 DOI: 10.1074/jbc.m112.404707] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/12/2012] [Indexed: 02/06/2023] Open
Abstract
α1-Antitrypsin (α1AT) deficiency (α1ATD) is a consequence of defective folding, trafficking, and secretion of α1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of α1ATD is caused by the Z-variant and is characterized by the accumulation of α1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of α1AT in the serum and its anti-protease activity in the lung. In this organ α1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in α1ATD, a more detailed understanding of the folding and trafficking biology governing α1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-α1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-α1AT secretion and serpin activity to a level 50% that observed for wild-type α1AT. These data suggest that HDAC activity can influence Z-α1AT protein traffic and that SAHA may represent a potential therapeutic approach for α1ATD and other protein misfolding diseases.
Collapse
Affiliation(s)
| | | | | | - Terence R. Flotte
- the Department of Pediatrics and Gene Therapy Center UMass Medical School, Worcester, Massachusetts 01655
| | - William E. Balch
- From the Department of Cell Biology
- The Skaggs Institute for Chemical Biology
- Department of Chemical Physiology, and
- the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|