1
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:96-118. [PMID: 38689162 PMCID: PMC11772491 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
2
|
Pandey AK, Trivedi V. Heat shock protein HSPA8 impedes hemin-induced cellular-toxicity in liver. Toxicol In Vitro 2025; 102:105959. [PMID: 39486598 DOI: 10.1016/j.tiv.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of hemin in cells, tissues, and organs is one of the major pathological conditions linked to hemolytic diseases like malaria. Pro-oxidant hemin confers high toxicity following its accumulation. We tested the cellular toxicity of hemin on HepG2 cells by exploring modulation in various cellular characteristics. Hemin reduces the viability of HepG2 cells and brings about visible morphological changes. Hemin causes perforations on the surface of HepG2 cells observed through SEM. Hemin leads to the extracellular release of liver enzymes and reduces the wound-healing potential of HepG2 cells. Hemin leads to the fragmentation of HepG2 DNA, arrests the cell cycle progression in the S-phase and induces apoptosis in these cells. Western blot analysis revealed that hemin triggers both the extrinsic and intrinsic pathways of apoptosis in HepG2 cells. We have already shown that the cytoprotective protein HSPA8 can polymerize hemin and minimize its toxicity. Similar experiments with hemin in the presence and absence of HSPA8 showed that HSPA8 reverses all the tested toxic effects of hemin on HepG2 cells. The protection from hemin toxicity in HepG2 cells appeared to be due to the extracellular polymerization of hemin by HSPA8.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Wiatr M, Hadzhieva M, Lecerf M, Noé R, Justesen S, Lacroix-Desmazes S, Dragon-Durey MA, Dimitrov JD. Hyperoxidized Species of Heme Have a Potent Capacity to Induce Autoreactivity of Human IgG Antibodies. Int J Mol Sci 2023; 24:ijms24043416. [PMID: 36834827 PMCID: PMC9960230 DOI: 10.3390/ijms24043416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.
Collapse
Affiliation(s)
- Marie Wiatr
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maya Hadzhieva
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Sune Justesen
- Immunitrack Aps, Lersoe Park Alle 42, 2100 Copenhagen, Denmark
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Service d’Immunologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75610 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Correspondence: ; Tel.: +33-144-278206
| |
Collapse
|
4
|
Yu FF, Yuan Y, Ao Y, Hua L, Wang W, Cao Y, Xi J, Luan Y, Hou S, Zhang XY. A New Product of Bilirubin Degradation by H 2O 2 and Its Formation in Activated Neutrophils and in an Inflammatory Mouse Model. Biomolecules 2022; 12:biom12091237. [PMID: 36139076 PMCID: PMC9496627 DOI: 10.3390/biom12091237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Bilirubin (BR) is a tetrapyrrolic compound stemming from heme catabolism with diverse physiological functions. It can be oxidized by H2O2 to form several degradation products, some of which have been detected in vivo and may contribute to the pathogenesis of certain diseases. However, the oxidative degradation of BR is complex and the conditions that BR degradation occurs pathophysiologically remain obscure. Neutrophils are known to generate large amounts of reactive oxygen species, including H2O2, upon activation and they are mobilized to inflammatory sites; therefore, we hypothesized that activated neutrophils could cause BR degradation, which could occur at inflammatory sites. In the present study, we investigated BR degradation by H2O2 and identified hematinic acid (BHP1) and a new product BHP2, whose structure was characterized as 2,5-diformyl-4-methyl-1H-pyrrole-3-propanoic acid. An LC-MS/MS method for the quantitation of the two compounds was then established. Using the LC-MS/MS method, we observed the concentration-dependent formation of BHP1 and BHP2 in mouse neutrophils incubated with 10 and 30 μM of BR with the yields being 16 ± 3.2 and 31 ± 5.9 pmol/106 cells for BHP1, and 25 ± 4.4 and 71 ± 26 pmol/106 cells for BHP2, respectively. After adding phorbol 12-myristate 13-acetate, a neutrophil agonist, to 30 μM of BR-treated cells, the BHP1 yield increased to 43 ± 6.6 pmol/106 cells, whereas the BHP2 one decreased to 47 ± 9.2 pmol/106 cells. The two products were also detected in hemorrhagic skins of mice with dermal inflammation and hemorrhage at levels of 4.5 ± 1.9 and 0.18 ± 0.10 nmol/g tissue, respectively, which were significantly higher than those in the non-hemorrhagic skins. BHP2 was neurotoxic starting at 0.10 μM but BHP1 was not, as assessed using Caenorhabditis elegans as the animal model. Neutrophil-mediated BR degradation may be a universally pathophysiological process in inflammation and can be particularly important under pathological conditions concerning hemorrhage.
Collapse
Affiliation(s)
- Fei-Fei Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yao Yuan
- Shanghai Jiao Tong University-Hangzhou Future Sci-Tech City Joint Research Center for Tumor Immunotherapy, Hangzhou Innovation Institute for Systems Oncology, Hangzhou 311121, China
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Hua
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangwei Hou
- Shanghai Jiao Tong University-Hangzhou Future Sci-Tech City Joint Research Center for Tumor Immunotherapy, Hangzhou Innovation Institute for Systems Oncology, Hangzhou 311121, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (W.W.); (S.H.); (X.-Y.Z.)
| |
Collapse
|
5
|
Liu J, Kong L, Chen D, Tang H, Lu Y, Yuan Y, Qian F, Hou S, Zhao W, Zhang M. Bilirubin oxidation end product B prevents CoCl 2-induced primary cortical neuron apoptosis by promoting cell survival Akt/mTOR/p70S6K signaling pathway. Biochem Biophys Res Commun 2022; 602:27-34. [PMID: 35247701 DOI: 10.1016/j.bbrc.2022.02.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023]
Abstract
Bilirubin oxidation end products (BOXes) are associated with the late-developing neurological deficits after subarachnoid hemorrhage (SAH) possibly by direct constricting the cerebral arteries, but their specific impacts on neurons especially in the state of hypoxia, a prominent feature during the late stage of SAH, remain unclear. Here, we explored the effects of BOXes on the primary cortical neurons subjected to CoCl2-induced hypoxia by evaluating the morphological and apoptotic changes of neurons. The present study showed that Z-BOX B but not Z-BOX A greatly alleviated CoCl2-induced neuronal cell deterioration and apoptosis. Immunocytochemical staining assay showed Z-BOX B significantly increased neurite length, the numbers of both secondary and tertiary branches, and the protein level of Synaptophysin. Caspase 3/7 apoptosis assay and DAPI staining showed that Z-BOX B markedly reduced primary cortical neurons apoptosis. The expression of cleaved Caspase-3 was suppressed by Z-BOX B treatment, while the expression of Bcl-xL was upregulated. To further discover the mechanism of the neuroprotective effect observed in Z-BOX B, we found Z-BOX B increased the expression of p-mTOR, p-Akt, and p-p70S6K. In general, our results implicated Z-BOX B may prevent CoCl2-induced primary cortical neurons apoptosis by activating sAkt/mTOR/p70S6K signaling pathway. Hence, the present data may provide new insights into the pathophysiological mechanism of delayed neurological dysfunction after SAH and novel targets for treating SAH.
Collapse
Affiliation(s)
- Jingting Liu
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lingxuan Kong
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dongxin Chen
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huirong Tang
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Yao Yuan
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Qian
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wenjuan Zhao
- Pharm-X Center, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
6
|
Bilirubin Oxidation End Products (BOXes) Induce Neuronal Oxidative Stress Involving the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8869908. [PMID: 34373769 PMCID: PMC8349295 DOI: 10.1155/2021/8869908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Delayed ischemic neurological deficit (DIND) is a severe complication after subarachnoid hemorrhage (SAH). Previous studies have suggested that bilirubin oxidation end products (BOXes) are probably associated with the DIND after SAH, but there is a lack of direct evidence yet even on cellular levels. In the present study, we aim to explore the potential role of BOXes and the involved mechanisms in neuronal function. We synthesized high-purity (>97%) BOX A and BOX B isomers. The pharmacokinetics showed they are permeable to the blood-brain barrier. Exposure of a moderate concentration (10 or 30 μM) of BOX A or BOX B to isolated primary cortical neurons increased the production of reactive oxygen species. In the human neuroblastoma SH-SY5Y cells, BOX A and BOX B decreased the mitochondrial membrane potential and enhanced nuclear accumulation of the protein Nrf2 implicated in oxidative injury repair. In addition, both chemicals increased the mRNA and protein expression levels of multiple antioxidant response genes including Hmox1, Gsta3, Blvrb, Gclm, and Srxn1, indicating that the antioxidant response element (ARE) transcriptional cascade driven by Nrf2 is activated. In conclusion, we demonstrated that primary cortical neurons and neuroblastoma cells undergo an adaptive response against BOX A- and BOX B-mediated oxidative stress by activation of multiple antioxidant responses, in part through the Nrf2 pathway, which provides in-depth insights into the pathophysiological mechanism of DIND after SAH or other neurological dysfunctions related to cerebral hemorrhage.
Collapse
|
7
|
Seidel R, Ritter M, Joerk A, Kuschke S, Langguth N, Schulze D, Görls H, Bauer M, Witte OW, Westerhausen M, Holthoff K, Pohnert G. Photoisomerization Neutralizes Vasoconstrictive Activity of a Heme Degradation Product. ACS OMEGA 2020; 5:21401-21411. [PMID: 32905283 PMCID: PMC7469247 DOI: 10.1021/acsomega.0c01698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Delayed cerebral ischemia (DCI) caused by cerebral vasospasm is the leading determinant of poor outcome and mortality in subarachnoid hemorrhage (SAH) patients, but current treatment options lack effective prevention and therapy. Two substance families of heme degradation products (HDPs), bilirubin oxidation end products (BOXes) and propentdyopents (PDPs), are elicitors of pathologic cerebral hypoperfusion after SAH. Z-configured HDPs can be photoconverted into the corresponding E-isomers. We hypothesize that photoconversion is a detoxification mechanism to prevent and treat DCI. We irradiated purified Z-BOXes and Z-PDPs with UV/Vis light and documented the Z-E photoconversion. E-BOX A slowly reisomerizes to the thermodynamically favored Z-configuration in protein-containing media. In contrast to vasoconstrictive Z-BOX A, E-BOX A does not cause vasoconstriction in cerebral arterioles in vitro and in vivo in wild-type mice. Our results enable a critical assessment of light-induced intrathecal photoconversion and suggest the use of phototherapy to prevent and cure HDP-mediated cerebral vasospasms.
Collapse
Affiliation(s)
- Raphael
A. Seidel
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
- Department
of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control
and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Devie
Medical, c/o Jena University Hospital, Bachstraße 18, 07743 Jena, Germany
| | - Marcel Ritter
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Alexander Joerk
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
- Research
Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Stefan Kuschke
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Niklas Langguth
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Daniel Schulze
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Helmar Görls
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Michael Bauer
- Department
of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control
and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Otto W. Witte
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
- Research
Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Matthias Westerhausen
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Knut Holthoff
- Hans
Berger Department of Neurology, Jena University
Hospital, Am Klinikum
1, 07747 Jena, Germany
| | - Georg Pohnert
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
8
|
Strauss KA, Ahlfors CE, Soltys K, Mazareigos GV, Young M, Bowser LE, Fox MD, Squires JE, McKiernan P, Brigatti KW, Puffenberger EG, Carson VJ, Vreman HJ. Crigler-Najjar Syndrome Type 1: Pathophysiology, Natural History, and Therapeutic Frontier. Hepatology 2020; 71:1923-1939. [PMID: 31553814 PMCID: PMC7909716 DOI: 10.1002/hep.30959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS We describe the pathophysiology, treatment, and outcome of Crigler-Najjar type 1 syndrome (CN1) in 28 UGT1A1 c.222C>A homozygotes followed for 520 aggregate patient-years. APPROACH AND RESULTS Unbound ("free") bilirubin (Bf ) was measured in patient sera to characterize the binding of unconjugated bilirubin (BT ) to albumin (A) and validate their molar concentration ratio (BT /A) as an index of neurological risk. Two custom phototherapy systems were constructed from affordable materials to provide high irradiance in the outpatient setting; light dose was titrated to keep BT /A at least 30% below intravascular BT binding capacity (i.e., BT /A = 1.0). Categorical clinical outcomes were ascertained by chart review, and a measure (Lf ) was used to quantify liver fibrosis. Unbound bilirubin had a nonlinear relationship to BT (R2 = 0.71) and BT /A (R2 = 0.76), and Bf as a percentage of BT correlated inversely to the bilirubin-albumin equilibrium association binding constant (R2 = 0.69), which varied 10-fold among individuals. In newborns with CN1, unconjugated bilirubin increased 4.3 ± 1.1 mg/dL per day. Four (14%) neonates developed kernicterus between days 14 and 45 postnatal days of life; peak BT ≥ 30 mg/dL and BT /A ≥ 1.0 mol:mol were equally predictive of perinatal brain injury (sensitivity 100%, specificity 93.3%, positive predictive value 88.0%), and starting phototherapy after age 13 days increased this risk 3.5-fold. Consistent phototherapy with 33-103 µW/cm2 •nm for 9.2 ± 1.1 hours/day kept BT and BT /A within safe limits throughout childhood, but BT increased 0.46 mg/dL per year to reach dangerous concentrations by 18 years of age. Liver transplantation (n = 17) normalized BT and eliminated phototherapy dependence. Liver explants showed fibrosis ranging from mild to severe. CONCLUSION Seven decades after its discovery, CN1 remains a morbid and potentially fatal disorder.
Collapse
Affiliation(s)
- Kevin A. Strauss
- Clinic for Special Children, Strasburg, PA,Penn-Lancaster General Hospital, Lancaster, PA,Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA
| | - Charles E. Ahlfors
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Kyle Soltys
- Department of Surgery, Division of Pediatric Transplantation, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - George V. Mazareigos
- Department of Surgery, Division of Pediatric Transplantation, Hillman Center for Pediatric Transplantation, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | | | - Michael D. Fox
- Clinic for Special Children, Strasburg, PA,Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA,Diagnostic Referral Division, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - James E. Squires
- Division of Gastroenterology and Hepatology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Patrick McKiernan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, UPMC Children’s Hospital of Pittsburgh and Pittsburgh Liver Research Center, Pittsburgh, PA
| | | | | | | | - Hendrik J. Vreman
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
9
|
Ritter M, Oetama VSP, Schulze D, Muetzlaff K, Meents AK, Seidel RA, Görls H, Westerhausen M, Boland W, Pohnert G. Pyrrolic and Dipyrrolic Chlorophyll Degradation Products in Plants and Herbivores. Chemistry 2020; 26:6205-6213. [PMID: 31971638 PMCID: PMC7318184 DOI: 10.1002/chem.201905236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Indexed: 12/21/2022]
Abstract
The degradation of chlorophyll, the omnipresent green pigment, has been investigated intensively over the last 30 years resulting in many elucidated tetrapyrrolic degradation products. With a comparison to the degradation of the structurally similar heme, we hereby propose a novel additional chlorophyll degradation mechanism to mono- and dipyrrolic products. This is the first proof of the occurrence of a family of mono- and dipyrrols in leaves that are previously only known as heme degradation products. This product family is also found in spit and feces of herbivores with specific metabolomic patterns reflecting the origin of the samples. Based on chromatographic and mass spectrometric evidence as well as on mechanistic considerations we also suggest several tentative new degradation products. One of them, dihydro BOX A, was fully confirmed as a novel natural product by synthesis and comparison of its spectroscopic data.
Collapse
Affiliation(s)
- Marcel Ritter
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryLessingstr. 807743JenaGermany
| | | | - Daniel Schulze
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryHumboldtstr. 807743JenaGermany
| | - Katrin Muetzlaff
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryLessingstr. 807743JenaGermany
| | - Anja K. Meents
- Max Planck Institute for Chemical EcologyHans-Knöll-Str. 807745JenaGermany
| | - Raphael A. Seidel
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryLessingstr. 807743JenaGermany
| | - Helmar Görls
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryHumboldtstr. 807743JenaGermany
| | - Matthias Westerhausen
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryHumboldtstr. 807743JenaGermany
| | - Wilhelm Boland
- Max Planck Institute for Chemical EcologyHans-Knöll-Str. 807745JenaGermany
| | - Georg Pohnert
- Friedrich Schiller University JenaInstitute of Inorganic and Analytical ChemistryLessingstr. 807743JenaGermany
- Max Planck Institute for Chemical EcologyHans-Knöll-Str. 807745JenaGermany
| |
Collapse
|
10
|
Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver Injury and Failure in Critical Illness. Hepatology 2019; 70:2204-2215. [PMID: 31215660 DOI: 10.1002/hep.30824] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
The frequency of acquired liver injury and failure in critical illness has been significantly increasing over recent decades. Currently, liver injury and failure are observed in up to 20% of patients in intensive care units and are associated with significantly increased morbidity and mortality. Secondary forms of liver injury in critical illness are divided primarily into cholestatic, hypoxic, or mixed forms. Therefore, sufficient knowledge of underlying alterations (e.g., hemodynamic, inflammatory, or drug induced) is key to a better understanding of clinical manifestations, prognostic implications, as well as diagnostic and therapeutic options of acquired liver injury and failure. This review provides a structured approach for the evaluation and treatment of acquired liver injury and failure in critically ill patients.
Collapse
Affiliation(s)
- Thomas Horvatits
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Gastroenterology & Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Andreas Drolz
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Gastroenterology & Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Gastroenterology & Hepatology, Department Internal Medicine 3, Medical University of Vienna, Vienna, Austria.,Department of Medicine B, Gastroenterology and Hepatology, University Münster, Münster, Germany
| |
Collapse
|
11
|
Schulze D, Klopfleisch M, Görls H, Westerhausen M. BOX A-type monopyrrolic heterocycles modified via the Suzuki-Miyaura cross-coupling reaction. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The in vivo oxidation of heme yields bilirubin which is further degraded to the bilirubin oxidation end products (BOXes) that are biologically highly active. To study the mode of action and fate of (Z)-2-(4-methyl-5-oxo-3-vinyl-1,5-dihydro-2H-pyrrol-2-ylidene)acetamide (BOX A), the Suzuki-Miyaura cross-coupling reaction allows to introduce various alkenyl- and aryl-substituents in 3-position of the (Z)-2-(4-methyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)acetamides (BOX A-type monopyrroles). The influence of these groups on structural and NMR-spectroscopic parameters of the central monopyrrolic system is negligible. Special focus has been given to derivatives with 3-positioned aryl substituents carrying trifluoromethyl groups for future in vivo
19F NMR studies.
Collapse
Affiliation(s)
- Daniel Schulze
- Friedrich Schiller University Jena , Chair of Inorganic Chemistry 1 , Humboldtstraße 8 , D-07743 Jena , Germany
| | - Maurice Klopfleisch
- Otto von Guericke University , Medicinal Faculty, Clinic for Radiology and Nuclear Medicine , D-39120 Magdeburg , Germany
| | - Helmar Görls
- Friedrich Schiller University Jena , Chair of Inorganic Chemistry 1 , Humboldtstraße 8 , D-07743 Jena , Germany
| | - Matthias Westerhausen
- Friedrich Schiller University Jena , Chair of Inorganic Chemistry 1 , Humboldtstraße 8 , D-07743 Jena , Germany , Fax: +49 (0) 3641-9-48132
| |
Collapse
|
12
|
Englert FA, Seidel RA, Galler K, Gouveia Z, Soares MP, Neugebauer U, Clemens MG, Sponholz C, Heinemann SH, Pohnert G, Bauer M, Weis S. Labile heme impairs hepatic microcirculation and promotes hepatic injury. Arch Biochem Biophys 2019; 672:108075. [DOI: 10.1016/j.abb.2019.108075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
|
13
|
Schulze D, Traber J, Ritter M, Görls H, Pohnert G, Westerhausen M. Total syntheses of the bilirubin oxidation end product Z-BOX C and its isomeric form Z-BOX D. Org Biomol Chem 2019; 17:6489-6496. [PMID: 31206115 DOI: 10.1039/c9ob01117j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative degradation products of bilirubin (BOXes) are biologically highly active and certain BOXes cause long-lasting narrowing of cerebral blood vessels presumably with a significant role in subarachnoid hemorrhage. Due to the fact that mode of action as well as fate of these BOXes is widely unknown, larger amounts of these bilirubin degradation end products are required. The total synthesis of colorless (Z)-3-(5-(2-amino-2-oxoethylidene)-4-methyl-2-oxo-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid (BOX C) succeeds via a seven-step procedure with a total yield of 20%. Its isomeric form (Z)-3-(2-(2-amino-2-oxoethylidene)-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-3-yl)propanoic acid (BOX D) can be prepared via a five-step protocol with a yield of 30%. NMR and crystallographic studies reveal that charge delocalization within the conjugated π-systems of BOXes C and D is negligible. Exposure of solutions of Z-BOX C and Z-BOX D to bright sunlight leads to Z/E-isomerization and mixtures of the respective E/Z-BOXes C and D.
Collapse
Affiliation(s)
- Daniel Schulze
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Juliane Traber
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Marcel Ritter
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, D-07743 Jena, Germany.
| |
Collapse
|
14
|
Joerk A, Ritter M, Langguth N, Seidel RA, Freitag D, Herrmann KH, Schaefgen A, Ritter M, Günther M, Sommer C, Braemer D, Walter J, Ewald C, Kalff R, Reichenbach JR, Westerhausen M, Pohnert G, Witte OW, Holthoff K. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage. Circ Res 2019; 124:e101-e114. [PMID: 30947629 DOI: 10.1161/circresaha.118.314160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Delayed ischemic neurological deficit is the most common cause of neurological impairment and unfavorable prognosis in patients with subarachnoid hemorrhage (SAH). Despite the existence of neuroimaging modalities that depict the onset of the accompanying cerebral vasospasm, preventive and therapeutic options are limited and fail to improve outcome owing to an insufficient pathomechanistic understanding of the delayed perfusion deficit. Previous studies have suggested that BOXes (bilirubin oxidation end products), originating from released heme surrounding ruptured blood vessels, are involved in arterial vasoconstriction. Recently, isolated intermediates of oxidative bilirubin degradation, known as PDPs (propentdyopents), have been considered as potential additional effectors in the development of arterial vasoconstriction. OBJECTIVE To investigate whether PDPs and BOXes are present in hemorrhagic cerebrospinal fluid and involved in the vasoconstriction of cerebral arterioles. METHODS AND RESULTS Via liquid chromatography/mass spectrometry, we measured increased PDP and BOX concentrations in cerebrospinal fluid of SAH patients compared with control subjects. Using differential interference contrast microscopy, we analyzed the vasoactivity of PDP isomers in vitro by monitoring the arteriolar diameter in mouse acute brain slices. We found an arteriolar constriction on application of PDPs in the concentration range that occurs in the cerebrospinal fluid of patients with SAH. By imaging arteriolar diameter changes using 2-photon microscopy in vivo, we demonstrated a short-onset vasoconstriction after intrathecal injection of either PDPs or BOXes. Using magnetic resonance imaging, we observed a long-term PDP-induced delay in cerebral perfusion. For all conditions, the arteriolar narrowing was dependent on functional big conductance potassium channels and was absent in big conductance potassium channels knockout mice. CONCLUSIONS For the first time, we have quantified significantly higher concentrations of PDP and BOX isomers in the cerebrospinal fluid of patients with SAH compared to controls. The vasoconstrictive effect caused by PDPs in vitro and in vivo suggests a hitherto unrecognized pathway contributing to the pathogenesis of delayed ischemic deficit in patients with SAH.
Collapse
Affiliation(s)
- Alexander Joerk
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany.,Research Program Else Kröner-Forschungskolleg AntiAge (A.J.), Jena University Hospital, Germany
| | | | - Niklas Langguth
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Raphael Andreas Seidel
- Department of Anesthesiology and Intensive Care Medicine / Center for Sepsis Control and Care (R.A.S.), Jena University Hospital, Germany.,Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany (Marcel Ritter, R.A.S., M.W., G.P.)
| | - Diana Freitag
- Department of Neurosurgery (D.F., J.W., R.K.), Jena University Hospital, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Germany (K.-H.H., J.R.R.)
| | - Anna Schaefgen
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Marvin Ritter
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Milena Günther
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Charline Sommer
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Dirk Braemer
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Jan Walter
- Department of Neurosurgery (D.F., J.W., R.K.), Jena University Hospital, Germany
| | - Christian Ewald
- Department of Neurosurgery, Brandenburg Medical School, Campus Brandenburg an der Havel, Germany (C.E.)
| | - Rolf Kalff
- Department of Neurosurgery (D.F., J.W., R.K.), Jena University Hospital, Germany
| | - Jürgen Rainer Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Germany (K.-H.H., J.R.R.)
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany (Marcel Ritter, R.A.S., M.W., G.P.)
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany (Marcel Ritter, R.A.S., M.W., G.P.)
| | - Otto Wilhelm Witte
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| | - Knut Holthoff
- From the Hans Berger Department of Neurology (A.J., N.L., A.S., Marvin Ritter, M.G., C.S., D.B., O.W.W., K.H.), Jena University Hospital, Germany
| |
Collapse
|
15
|
Ritter M, Neupane S, Seidel RA, Steinbeck C, Pohnert G. In vivo and in vitro identification of Z-BOX C - a new bilirubin oxidation end product. Org Biomol Chem 2019. [PMID: 29532847 DOI: 10.1039/c8ob00164b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new bilirubin oxidation end product (BOX) was isolated and characterized. The formation of the so-called Z-BOX C proceeds from bilirubin via propentdyopents as intermediates. This BOX was detected in pathological human bile samples using liquid chromatography/mass spectrometry and has potential relevance for liver dysfunction and cerebral vasospasms.
Collapse
Affiliation(s)
- Marcel Ritter
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
16
|
Rapoport RM. Bilirubin Oxidation Products and Cerebral Vasoconstriction. Front Pharmacol 2018; 9:303. [PMID: 29755343 PMCID: PMC5934420 DOI: 10.3389/fphar.2018.00303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/15/2018] [Indexed: 01/15/2023] Open
Abstract
Key evidence in support of the hypothesis that bilirubin oxidation products (BOXes) contribute to the vasoconstriction associated with subarachnoid hemorrhage (SAH) are the (1) presence of BOXes in cerebral spinal fluid from SAH patients and (2) ability of one or more BOXes to elicit vasoconstriction. We critically evaluate this key evidence, detail where gaps remain, and describe recent approaches that will address these gaps.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
17
|
Abstract
BACKGROUND Crigler-Najjar syndrome type I (CNI) arises from biallelic variants of UGT1A1 that abrogate uridine diphosphate glucuronosyltransferase (UGT1A1) activity resulting in unconjugated hyperbilirubinemia. Historically, liver parenchyma in CNI was considered structurally and histologically normal. Recent review of CNI liver explants revealed fibrosis. Our aim was to investigate the association between hepatic histology and disease phenotype in CNI. METHODS We extracted data from the medical record at the time of liver transplant from 22 patients with CNI at the Children's Hospital of Pittsburgh, and reviewed explant histology. Continuous data were normally distributed, are presented as mean (±1 SD), and analyzed using two-tailed Student t-test. Categorical data were analyzed using the Chi-square test. RESULTS Both alanine transaminase (ALT; mean 87.4 IU/L) and aspartate transaminase (AST; mean 54.6 IU/L) were elevated. Nine (41%) of 22 explants had significant fibrosis. Pericentral (n = 5), periportal (n = 2), and mixed (n = 2) patterns of fibrosis occurred. A significant difference in mean age of subjects with fibrotic versus non-fibrotic livers (16.1 years vs 10.5 years; P = 0.02) was seen. There were no indices of synthetic liver dysfunction or portal hypertension. Neither a history of gallstone disease nor excess weight appeared to contribute to the development of fibrosis. CONCLUSIONS For the first time, we report a 41% prevalence of clinically silent, yet histologically significant fibrosis among subjects with Crigler-Najjar type 1. Risk for fibrosis appears to accrue with time, indicating that earlier intervention may be prudent whenever considering alternative treatments such as hepatocyte transplant, auxiliary liver transplant, or viral gene therapy.
Collapse
|