1
|
Huang W, Song C, Hua Y, Liu A. NNMT is involved in deoxynivalenol-induced hepatocyte toxicity via promoting ferroptosis. Toxicology 2025; 513:154084. [PMID: 39983889 DOI: 10.1016/j.tox.2025.154084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Deoxynivalenol (DON) is a common contamination mycotoxin that which exerts significant hepatotoxicity, posing a serious threat to human and animal health. Ferroptosis has been linked to the development of hepatotoxicity induced by DON. However, the mechanism by which DON promotes ferroptosis in hepatocytes is not well understood. Although studies have shown that DON upregulates the expression of nicotinamide N-Methyltransferase (NNMT), its role in DON hepatotoxicity has not been elucidated. In this study, we found that DON inhibited SLC7A11/GPX4 and increased cytosolic free Fe2 + and lipid ROS, thereby inducing ferroptosis of HepG2 cells. Overexpression of NNMT markedly downregulated the expression of SLC7A11, GPX4, GCLC, and NQO1, exacerbated the DON-induced increase in free Fe2+ and lipid ROS, thus promoting ferroptosis. Silencing or inhibition of NNMT produced opposite effects and abolished the DON-induced ferroptosis. Further application of SLC7A11 and GPX4 inhibitor treatments confirmed that following DON exposure, NNMT triggered ferroptosis by inhibiting SLC7A11 and GPX4, to reduce cell viability and inhibit cell growth. Taken together, this study found that DON-induced NNMT may enhance ferroptosis by inhibiting the SLC7A11/GPX4 proteins in HepG2 cells. These findings provide valuable insights for controlling DON hepatotoxicity and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Chenchen Song
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yu Hua
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Aimei Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
2
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|