1
|
Zheng X, Zhao Y, Naumovski N, Zhao W, Yang G, Xue X, Wu L, Granato D, Peng W, Wang K. Systems Biology Approaches for Understanding Metabolic Differences Using 'Multi-Omics' Profiling of Metabolites in Mice Fed with Honey and Mixed Sugars. Nutrients 2022; 14:3445. [PMID: 36014951 PMCID: PMC9412287 DOI: 10.3390/nu14163445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
Honey is proposed to be the oldest natural sweetener and it is a standard component of several dietary patterns. Recent evidence suggests that replacing sugars, such as fructose, with honey has potential health benefits. In this study, we determined the effects of honey supplementation in mice on cardiometabolic and inflammatory markers and changes in gut microbiota and metabolomic profiles. We compared mice fed a honey diet (1 or 2 g/kg) with those fed an analog diet (mixed fructose, glucose, and sucrose (FSG) solutions) at exact dosages for one month. We found the same blood glucose fluctuating trends for honey- and FGS-fed mice. The honey diets resulted in less weight gain and fewer ballooned hepatocytes. Additionally, honey diets decreased the total serum cholesterol and TNF-α and increased the antioxidant enzyme activity. Each diet type was associated with distinct gut microbiota and metabolomics profiles. Systems biology analysis revealed that Lactococcus spp., Lachnospiraceae spp., and oleamide had the strongest correlations with lipid metabolic networks. Although in an animal model, this study provides a good understanding of the potential benefits of choosing honey rather than mixed sugars in regular dietary patterns.
Collapse
Affiliation(s)
- Xing Zheng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yazhou Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Nenad Naumovski
- University of Canberra Health Research Institute (UCHRI), University of Canberra, Locked Bag 1, Bruce, Canberra, ACT 2601, Australia
| | - Wen Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|