1
|
Zhang Y, Westaway KE, Haberle S, Lubeek JK, Bailey M, Ciochon R, Morley MW, Roberts P, Zhao JX, Duval M, Dosseto A, Pan Y, Rule S, Liao W, Gully GA, Lucas M, Mo J, Yang L, Cai Y, Wang W, Joannes-Boyau R. The demise of the giant ape Gigantopithecus blacki. Nature 2024; 625:535-539. [PMID: 38200315 PMCID: PMC10794149 DOI: 10.1038/s41586-023-06900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
The largest ever primate and one of the largest of the southeast Asian megafauna, Gigantopithecus blacki1, persisted in China from about 2.0 million years until the late middle Pleistocene when it became extinct2-4. Its demise is enigmatic considering that it was one of the few Asian great apes to go extinct in the last 2.6 million years, whereas others, including orangutan, survived until the present5. The cause of the disappearance of G. blacki remains unresolved but could shed light on primate resilience and the fate of megafauna in this region6. Here we applied three multidisciplinary analyses-timing, past environments and behaviour-to 22 caves in southern China. We used 157 radiometric ages from six dating techniques to establish a timeline for the demise of G. blacki. We show that from 2.3 million years ago the environment was a mosaic of forests and grasses, providing ideal conditions for thriving G. blacki populations. However, just before and during the extinction window between 295,000 and 215,000 years ago there was enhanced environmental variability from increased seasonality, which caused changes in plant communities and an increase in open forest environments. Although its close relative Pongo weidenreichi managed to adapt its dietary preferences and behaviour to this variability, G. blacki showed signs of chronic stress and dwindling populations. Ultimately its struggle to adapt led to the extinction of the greatest primate to ever inhabit the Earth.
Collapse
Affiliation(s)
- Yingqi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.
| | - Kira E Westaway
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.
| | - Simon Haberle
- School of Culture, History and Languages, ANU College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Juliën K Lubeek
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Marian Bailey
- GARG, Southern Cross University, Lismore, New South Wales, Australia
| | - Russell Ciochon
- Department of Anthropology and Museum of Natural History, University of Iowa, Iowa City, IA, USA
| | - Mike W Morley
- College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Patrick Roberts
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- School of Social Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jian-Xin Zhao
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mathieu Duval
- National Research Centre on Human Evolution CENIEH, Burgos, Spain
- Australian Research Centre for Human Evolution (ARCHE), Griffith University, Brisbane, Queensland, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yue Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Sue Rule
- School of Culture, History and Languages, ANU College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Wei Liao
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Grant A Gully
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Mary Lucas
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Jinyou Mo
- Natural History Museum of Guangxi, Nanning, China
| | - Liyun Yang
- Chongzuo Zhuang Ethnological Musuem, Chongzuo, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Institute of Cultural Heritage, Shandong University, Qingdao, China.
| | - Renaud Joannes-Boyau
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- GARG, Southern Cross University, Lismore, New South Wales, Australia.
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
3
|
Urciuoli A, Alba DM. Systematics of Miocene apes: State of the art of a neverending controversy. J Hum Evol 2023; 175:103309. [PMID: 36716680 DOI: 10.1016/j.jhevol.2022.103309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/29/2023]
Abstract
Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene onward, the geographic range of hominoids progressively shrank, except for hominins, which dispersed out of Africa during the Pleistocene. Although the overall picture of hominoid evolution is clear based on available fossil evidence, many uncertainties persist regarding the phylogeny and paleobiogeography of Miocene apes (nonhominin hominoids), owing to their sparse record, pervasive homoplasy, and the decimated current diversity of this group. We review Miocene ape systematics and evolution by focusing on the most parsimonious cladograms published during the last decade. First, we provide a historical account of the progress made in Miocene ape phylogeny and paleobiogeography, report an updated classification of Miocene apes, and provide a list of Miocene ape species-locality occurrences together with an analysis of their paleobiodiversity dynamics. Second, we discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly divergent results obtained from cladistic analyses of craniodental and postcranial characters separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are potentially biased by a long-branch attraction problem caused by the numerous postcranial similarities shared between hylobatids and hominids-despite the increasingly held view that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and Pierolapithecus-and further aggravated by abundant missing data owing to incomplete preservation. Finally, we argue that-besides the recovery of additional fossils, the retrieval of paleoproteomic data, and a better integration between cladistics and geometric morphometrics-Miocene ape phylogenetics should take advantage of total-evidence (tip-dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence was more basal than currently supported.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
4
|
Jiang Q, Zhao L, Guo L, Hu Y. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:93-108. [PMID: 33964022 DOI: 10.1002/ajpa.24300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Gigantopithecus blacki, the largest hominoid known, is one of the representative Pleistocene mammals in southern China and northern Southeast Asia. Here we investigate the feeding ecology of G. blacki in its core habitat (Guangxi, Southern China) during the early Early Pleistocene, which was the early period in its evolution. MATERIALS AND METHODS The stable isotopic (C, O) analysis of tooth enamel of the fauna associated with G. blacki (n = 58), including the largest number of G. blacki teeth (n = 12) to date from the Liucheng Gigantopithecus Cave (~2 Ma), Guangxi, China, is undertaken. RESULTS The δ13 C values of Liucheng fauna range from -12.9 to -19.0‰ with an average of -16.1 ± 1.3‰ (n = 58) and the δ18 O values range from -4.3 to -9.6‰ with an average of -6.9 ± 1.2‰ (n = 58). The δ13 C values of G. blacki range from -15.9‰ to -17.0‰ with an average of -16.5 ± 0.4‰ (n = 12), and the δ18 O values vary from -5.9‰ to -7.5‰ with an average of -6.6 ± 0.5‰ (n = 12). CONCLUSIONS The isotopic data show Guangxi was characterized by closed C3 forest and humid climate in the early Early Pleistocene. Niche partitioning is found among G. blacki, Sinomastodon, Ailuropoda and Stegodon, the typical megafauna in South China in the early Early Pleistocene. This could be one of the important factors for them to co-exist until the Middle Pleistocene. Smallest isotopic variations of G. blacki are found compared with those of contemporary animals, indicating a conservative foraging ecology i.e., limited foraging area and/or narrow dietary flexibility. Furthermore, the more confined foraging ecology of G. blacki is also seen in comparison with fossil and extant large-bodied primates. However, the unique dietary pattern of G. blacki does not seem to have hindered its survival. The environment in Guangxi during the early Early Pleistocene offered the suitable conditions for G. blacki to become one of the typical species in the faunal assemblages.
Collapse
Affiliation(s)
- Quyi Jiang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing, China.,Zhejiang Provincial Office of Cultural Relics Authentication, Hangzhou, China
| | - Lingxia Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Lin Guo
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaowu Hu
- Department of Cultural Heritage and Museology, Fudan University, Shanghai, China.,Institute of Archaeological Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cano-Fernández H, Gómez-Robles A. Assessing complexity in hominid dental evolution: Fractal analysis of great ape and human molars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 174:352-362. [PMID: 33242355 DOI: 10.1002/ajpa.24178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/18/2020] [Accepted: 11/04/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Molar crenulation is defined as the accessory pattern of grooves that appears on the occlusal surface of many mammalian molars. Although frequently used in the characterization of species, this trait is often assessed qualitatively, which poses unavoidable subjective biases. The objective of this study is to quantitatively test the variability in the expression of molar crenulation in primates and its association with molar size and diet. METHODS The variability in the expression of molar crenulation in hominids (human, chimpanzee, gorilla, and orangutan) was assessed with fractal analysis using photographs of first, second and third upper and lower molars. After this, representative values for 29 primate species were used to evaluate the correlation between molar complexity, molar size, and diet using a phylogenetic generalized least squares regression. RESULTS Results show that there are statistically significant differences in fractal dimensions across hominid species in all molars, with orangutan molars presenting higher values of occlusal complexity. Our results indicate that there is no significant association between molar complexity and molar size or diet. DISCUSSION Our results show higher levels of occlusal complexity in orangutans, thus supporting previously published observations. Our analyses, however, do not indicate a clear association between molar complexity and molar size or diet, pointing to other factors as the major drivers of complexity. To our knowledge, our study is the first one to use fractal analysis to measure occlusal complexity in primates. Our results show that this approach is a rapid and cost-effective way to measure molar complexity.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Universidad Autónoma de Barcelona, Barcelona, Spain.,Institute of Archaeology, University College London, London, UK
| | - Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.,Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Life Sciences, Natural History Museum of London, London, UK
| |
Collapse
|