1
|
Nwosu EC, Brauer A, Monchamp ME, Pinkerneil S, Bartholomäus A, Theuerkauf M, Schmidt JP, Stoof-Leichsenring KR, Wietelmann T, Kaiser J, Wagner D, Liebner S. Early human impact on lake cyanobacteria revealed by a Holocene record of sedimentary ancient DNA. Commun Biol 2023; 6:72. [PMID: 36653523 PMCID: PMC9849356 DOI: 10.1038/s42003-023-04430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Sedimentary DNA-based studies revealed the effects of human activity on lake cyanobacteria communities over the last centuries, yet we continue to lack information over longer timescales. Here, we apply high-resolution molecular analyses on sedimentary ancient DNA to reconstruct the history of cyanobacteria throughout the Holocene in a lake in north-eastern Germany. We find a substantial increase in cyanobacteria abundance coinciding with deforestation during the early Bronze Age around 4000 years ago, suggesting increased nutrient supply to the lake by local communities settling on the lakeshore. The next substantial human-driven increase in cyanobacteria abundance occurred only about a century ago due to intensified agricultural fertilisation which caused the dominance of potentially toxic taxa (e.g., Aphanizomenon). Our study provides evidence that humans began to locally impact lake ecology much earlier than previously assumed. Consequently, managing aquatic systems today requires awareness of the legacy of human influence dating back potentially several millennia.
Collapse
Affiliation(s)
- Ebuka Canisius Nwosu
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Achim Brauer
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, 14473 Potsdam, Germany ,grid.11348.3f0000 0001 0942 1117Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| | - Marie-Eve Monchamp
- grid.14709.3b0000 0004 1936 8649Department of Biology, McGill University, Montreal, QC H3A 1B1 Canada ,Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC, H3A 1B1 Canada
| | - Sylvia Pinkerneil
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Martin Theuerkauf
- grid.5603.0Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Jens-Peter Schmidt
- State Authority for Culture and Preservation of Monuments of Mecklenburg and Western Pomerania, State Archaeology, 19055 Schwerin, Germany
| | - Kathleen R. Stoof-Leichsenring
- grid.10894.340000 0001 1033 7684Polar Terrestrial Environmental System, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
| | - Theresa Wietelmann
- grid.10894.340000 0001 1033 7684Polar Terrestrial Environmental System, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
| | - Jerome Kaiser
- grid.423940.80000 0001 2188 0463Leibniz Institute for Baltic Sea Research, 18119 Rostock-Warnemünde, Germany
| | - Dirk Wagner
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany ,grid.11348.3f0000 0001 0942 1117Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| | - Susanne Liebner
- grid.23731.340000 0000 9195 2461GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany ,grid.11348.3f0000 0001 0942 1117Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Hider J, Duggan AT, Klunk J, Eaton K, Long GS, Karpinski E, Giuffra V, Ventura L, Fornaciari A, Fornaciari G, Golding GB, Prowse TL, Poinar HN. Examining pathogen DNA recovery across the remains of a 14th century Italian friar (Blessed Sante) infected with Brucella melitensis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2022; 39:20-34. [PMID: 36174312 DOI: 10.1016/j.ijpp.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate variation in ancient DNA recovery of Brucella melitensis, the causative agent of brucellosis, from multiple tissues belonging to one individual MATERIALS: 14 samples were analyzed from the mummified remains of the Blessed Sante, a 14 th century Franciscan friar from central Italy, with macroscopic diagnosis of probable brucellosis. METHODS Shotgun sequencing data from was examined to determine the presence of Brucella DNA. RESULTS Three of the 14 samples contained authentic ancient DNA, identified as belonging to B. melitensis. A genome (23.81X depth coverage, 0.98 breadth coverage) was recovered from a kidney stone. Nine of the samples contained reads classified as B. melitensis (7-169), but for many the data quality was insufficient to withstand our identification and authentication criteria. CONCLUSIONS We identified significant variation in the preservation and abundance of B. melitensis DNA present across multiple tissues, with calcified nodules yielding the highest number of authenticated reads. This shows how greatly sample selection can impact pathogen identification. SIGNIFICANCE Our results demonstrate variation in the preservation and recovery of pathogen DNA across tissues. This study highlights the importance of sample selection in the reconstruction of infectious disease burden and highlights the importance of a holistic approach to identifying disease. LIMITATIONS Study focuses on pathogen recovery in a single individual. SUGGESTIONS FOR FURTHER RESEARCH Further analysis of how sampling impacts aDNA recovery will improve pathogen aDNA recovery and advance our understanding of disease in past peoples.
Collapse
Affiliation(s)
- Jessica Hider
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| | - Ana T Duggan
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jennifer Klunk
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Daicel Arbor Biosciences, 5840 Interface Drive, Suite 101, Ann Arbor, MI 48103, USA
| | - Katherine Eaton
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - George S Long
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Emil Karpinski
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Valentina Giuffra
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, Medical School, via Roma 57, 56126 Pisa, PI, Italy
| | - Luca Ventura
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy; Division of Pathology, San Salvatore Hospital, University of L'Aquila, Coppito, 67100 L'Aquila, AQ, Italy
| | - Antonio Fornaciari
- Division of Paleopathology, Department of Translational Research on New Technologies in Medicine and Surgery, Medical School, via Roma 57, 56126 Pisa, PI, Italy
| | - Gino Fornaciari
- Maria Luisa di Borbone Academy, Villa Borbone, viale dei Tigli 32, 55049 Viareggio, LU, Italy
| | - G Brian Golding
- Department of Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Tracy L Prowse
- Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Hendrik N Poinar
- McMaster Ancient DNA Centre, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Anthropology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L9, Canada
| |
Collapse
|
3
|
Emery MV, Bolhofner K, Winingear S, Oldt R, Montes M, Kanthaswamy S, Buikstra JE, Fulginiti LC, Stone AC. Reconstructing full and partial STR profiles from severely burned human remains using comparative ancient and forensic DNA extraction techniques. Forensic Sci Int Genet 2020; 46:102272. [PMID: 32172220 DOI: 10.1016/j.fsigen.2020.102272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Thermal degeneration of the DNA molecule presents a special challenge to medico-legal investigations since low DNA yields, fragmented DNA molecules, and damaged nucleotide bases hinder accurate STR genotyping. As a consequence, fragments of severely burned human remains are often not amenable to standard DNA recovery. However, current ancient DNA (aDNA) extraction methods have proven highly effective at obtaining ultrashort DNA fragments (∼50 bp) from degraded palaeontological and archaeological specimens. In this study, we compare DNA yields and STR results obtained from two established aDNA and forensic DNA extraction protocols by sampling multiple skeletal elements recovered from victims (n = 23) involved in fire-related incidents. DNA yields and STR results suggest an inverse correlation between DNA yield and STR quality and increasing temperature. Despite the rapid thermal destruction of DNA at high temperatures, we generated higher quality full and partial STR profiles using the aDNA extraction protocol across all burn categories than the forensic total bone demineralization extraction method. Our analysis suggests adopting aDNA extraction methods as an alternative to current forensic practices to improve DNA yields from challenging human remains.
Collapse
Affiliation(s)
- M V Emery
- School of Human Evolution and Social Change, Arizona State University, United States; Center for Evolution and Medicine, Arizona State University, United States.
| | - K Bolhofner
- Center for Bioarchaeological Research, Arizona State University, United States; Maricopa County Office of the Medical Examiner, Phoenix, AZ, United States; School of Mathematical and Natural Sciences, Arizona State University, United States
| | - S Winingear
- School of Human Evolution and Social Change, Arizona State University, United States; Center for Evolution and Medicine, Arizona State University, United States
| | - R Oldt
- School of Life Sciences, Arizona State University, United States
| | - M Montes
- School of Mathematical and Natural Sciences, Arizona State University, United States
| | - S Kanthaswamy
- School of Life Sciences, Arizona State University, United States; School of Mathematical and Natural Sciences, Arizona State University, United States
| | - J E Buikstra
- School of Human Evolution and Social Change, Arizona State University, United States; Center for Evolution and Medicine, Arizona State University, United States; Center for Bioarchaeological Research, Arizona State University, United States
| | - L C Fulginiti
- School of Human Evolution and Social Change, Arizona State University, United States; Maricopa County Office of the Medical Examiner, Phoenix, AZ, United States
| | - A C Stone
- School of Human Evolution and Social Change, Arizona State University, United States; Center for Evolution and Medicine, Arizona State University, United States; Center for Bioarchaeological Research, Arizona State University, United States.
| |
Collapse
|
4
|
McHugo GP, Dover MJ, MacHugh DE. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 2019; 17:98. [PMID: 31791340 PMCID: PMC6889691 DOI: 10.1186/s12915-019-0724-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.
Collapse
Affiliation(s)
- Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Michael J Dover
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Müller P, Sell C, Hadrys T, Hedman J, Bredemeyer S, Laurent FX, Roewer L, Achtruth S, Sidstedt M, Sijen T, Trimborn M, Weiler N, Willuweit S, Bastisch I, Parson W. Inter-laboratory study on standardized MPS libraries: evaluation of performance, concordance, and sensitivity using mixtures and degraded DNA. Int J Legal Med 2019; 134:185-198. [PMID: 31745634 PMCID: PMC6949318 DOI: 10.1007/s00414-019-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022]
Abstract
We present results from an inter-laboratory massively parallel sequencing (MPS) study in the framework of the SeqForSTRs project to evaluate forensically relevant parameters, such as performance, concordance, and sensitivity, using a standardized sequencing library including reference material, mixtures, and ancient DNA samples. The standardized library was prepared using the ForenSeq DNA Signature Prep Kit (primer mix A). The library was shared between eight European laboratories located in Austria, France, Germany, The Netherlands, and Sweden to perform MPS on their particular MiSeq FGx sequencers. Despite variation in performance between sequencing runs, all laboratories obtained quality metrics that fell within the manufacturer’s recommended ranges. Furthermore, differences in locus coverage did not inevitably adversely affect heterozygous balance. Inter-laboratory concordance showed 100% concordant genotypes for the included autosomal and Y-STRs, and still, X-STR concordance exceeded 83%. The exclusive reasons for X-STR discordances were drop-outs at DXS10103. Sensitivity experiments demonstrated that correct allele calling varied between sequencing instruments in particular for lower DNA amounts (≤ 125 pg). The analysis of compromised DNA samples showed the drop-out of one sample (FA10013B01A) while for the remaining three degraded DNA samples MPS was able to successfully type ≥ 87% of all aSTRs, ≥ 78% of all Y-STRs, ≥ 68% of all X-STRs, and ≥ 92% of all iSNPs demonstrating that MPS is a promising tool for human identity testing, which in return, has to undergo rigorous in-house validation before it can be implemented into forensic routine casework.
Collapse
Affiliation(s)
- Petra Müller
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | | | - Thorsten Hadrys
- Institute of Forensic Sciences, DNA Department, Bavarian State Criminal Police Office, Munich, Germany
| | - Johannes Hedman
- Swedish National Forensic Centre (NFC), Linköping, Sweden.,Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Steffi Bredemeyer
- Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Francois-Xavier Laurent
- Institut National de Police Scientifique, Laboratoire de Police Scientifique de Lyon, Ecully Cedex, France
| | - Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Achtruth
- The Police President in Berlin, Forensic Science Institute, Berlin, Germany
| | - Maja Sidstedt
- Swedish National Forensic Centre (NFC), Linköping, Sweden.,Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Titia Sijen
- Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, The Netherlands
| | - Marc Trimborn
- The Police President in Berlin, Forensic Science Institute, Berlin, Germany
| | - Natalie Weiler
- Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, The Netherlands
| | - Sascha Willuweit
- Institute of Legal Medicine and Forensic Sciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria. .,Forensic Science Program, The Pennsylvania State University, State College, PA, USA.
| | | |
Collapse
|
6
|
Anselmetti Y, Luhmann N, Bérard S, Tannier E, Chauve C. Comparative Methods for Reconstructing Ancient Genome Organization. Methods Mol Biol 2018; 1704:343-362. [PMID: 29277873 DOI: 10.1007/978-1-4939-7463-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Comparative genomics considers the detection of similarities and differences between extant genomes, and, based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring ancestral states explaining the similarities and an evolutionary history explaining the differences. In this chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We review different methodological approaches and software, applied to a wide range of datasets from different kingdoms of life and at different evolutionary depths. We discuss relations with genome assembly, and potential approaches to validate computational predictions on ancient genomes that are almost always only accessible through these predictions.
Collapse
Affiliation(s)
- Yoann Anselmetti
- Institut des Sciences de l'Évolution, Université Montpellier 2, Montpellier, France
| | - Nina Luhmann
- Faculty of Technology, Bielefeld University, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,International Research Training Group1906, Bielefeld University, Bielefeld, Germany
| | - Sèverine Bérard
- Institut des Sciences de l'Évolution, Université Montpellier 2, Montpellier, France
| | - Eric Tannier
- UMR CNRS 5558 - LBBE "Biométrie et Biologie Évolutive", Inria Grenoble Rhône-Alpes and University of Lyon, Lyon, France
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6.
| |
Collapse
|
7
|
Danchin A. Nature or manufacture: What should we fear most? C R Biol 2016; 339:329-35. [PMID: 27260497 DOI: 10.1016/j.crvi.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 11/27/2022]
Abstract
Of very ancient descent, domestication switched the outcome of natural selection to that due to human design. A widespread fancy is that man-created contraptions develop dangerously on their own because of their Promethean essence. This assumes implicitly-how difficult is it to refrain from thinking that we are the sawyers of nature!-that their crafted powers would dominate the autonomy resulting from billions of years of evolution. Yet artifice depends on the skills of its creator, so that it is when coming close to nature that danger surfaces. Invasive species are natural, and the havoc they create is here to call for some modesty in the appraisal of our endeavours. The farther away, the less dangerous. Being distant from man, engineered plants are considerably less harmful than animal constructs, especially those that are close to man and meant for medical use. This reality contrasts with popular belief. In this misconception lies the danger, magnified by the present demographic explosion of the invasive species Homo sapiens, which develops artificial environments that provide progressively less room for life to evolve.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), hôpital de la Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
8
|
Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 2016; 44:4504-18. [PMID: 27105841 PMCID: PMC4889952 DOI: 10.1093/nar/gkw309] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022] Open
Abstract
The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology.
Collapse
Affiliation(s)
- Cyrielle Gasc
- EA 4678 CIDAM, Université d'Auvergne, Clermont-Ferrand, 63001, France
| | | | - Pierre Peyret
- EA 4678 CIDAM, Université d'Auvergne, Clermont-Ferrand, 63001, France
| |
Collapse
|
9
|
Willermet C. Biological Anthropology in 2015: Open Access, Biocultural Interactions, and Social Change. AMERICAN ANTHROPOLOGIST 2016. [DOI: 10.1111/aman.12529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cathy Willermet
- Department of Sociology, Anthropology, and Social Work; Central Michigan University; Mount Pleasant MI 48859
| |
Collapse
|
10
|
Feldman M, Hershkovitz I, Sklan EH, Kahila Bar-Gal G, Pap I, Szikossy I, Rosin-Arbesfeld R. Detection of a Tumor Suppressor Gene Variant Predisposing to Colorectal Cancer in an 18th Century Hungarian Mummy. PLoS One 2016; 11:e0147217. [PMID: 26863316 PMCID: PMC4749341 DOI: 10.1371/journal.pone.0147217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/30/2015] [Indexed: 01/23/2023] Open
Abstract
Mutations of the Adenomatous polyposis coli (APC) gene are common and strongly associated with the development of colorectal adenomas and carcinomas. While extensively studied in modern populations, reports on visceral tumors in ancient populations are scarce. To the best of our knowledge, genetic characterization of mutations associated with colorectal cancer in ancient specimens has not yet been described. In this study we have sequenced hotspots for mutations in the APC gene isolated from 18th century naturally preserved human Hungarian mummies. While wild type APC sequences were found in two mummies, we discovered the E1317Q missense mutation, known to be a colorectal cancer predisposing mutation, in a large intestine tissue of an 18th century mummy. Our data suggests that this genetic predisposition to cancer already existed in the pre-industrialization era. This study calls for similar investigations of ancient specimens from different periods and geographical locations to be conducted and shared for the purpose of obtaining a larger scale analysis that will shed light on past cancer epidemiology and on cancer evolution.
Collapse
Affiliation(s)
- Michal Feldman
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Israel Hershkovitz
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gila Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Ildikó Szikossy
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing. PLoS One 2015; 10:e0143929. [PMID: 26716693 PMCID: PMC4696846 DOI: 10.1371/journal.pone.0143929] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/12/2015] [Indexed: 01/30/2023] Open
Abstract
In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.
Collapse
|
12
|
Microbial osteolysis in an Early Pleistocene hominin (Paranthropus robustus) from Swartkrans, South Africa. J Hum Evol 2015; 85:126-35. [DOI: 10.1016/j.jhevol.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/18/2015] [Accepted: 05/06/2015] [Indexed: 02/01/2023]
|
13
|
Affiliation(s)
- Anna Linderholm
- Research Laboratory for Archaeology; University of Oxford; Dyson Perrins Building South Parks Road Oxford OX1 3Q UK
| |
Collapse
|
14
|
Perry GH, Orlando L. Ancient DNA and human evolution. J Hum Evol 2015; 79:1-3. [DOI: 10.1016/j.jhevol.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|