1
|
Pelleg-Kallevag R, Borgel S, Kedar E, Peled N, May H. Changes in the shape of the lumbar curve during growth : a geometric morphometric approach. Bone Joint Res 2025; 14:58-68. [PMID: 39864458 PMCID: PMC11769593 DOI: 10.1302/2046-3758.141.bjr-2024-0081.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Aims The development of lumbar lordosis has been traditionally examined using angular measurements of the spine to reflect its shape. While studies agree regarding the increase in the angles during growth, the growth rate is understudied, and sexual dimorphism is debated. In this study, we used a novel method to estimate the shape of the lumbar curve (LC) using the landmark-based geometric morphometric method to explore changes in LC during growth, examine the effect of size and sex on LC shape, and examine the associations between angular measurements and shape. Methods The study population included 258 children aged between 0 and 20 years (divided into five age groups) who underwent a CT scan between the years 2009 and 2019. The landmark-based geometric morphometric method was used to capture the LC shape in a sagittal view. Additionally, the lordosis was measured via Cobb and sacral slope angles. Multivariate and univariate statistical analyses were carried out to examine differences in shape between males and females and between the age groups. Results The overall shape of the LC overlapped between males and females in most age groups, except for the nine- to 12-year age group. However, size did not affect LC shape. LC shape changed significantly during growth from straight to curved, reaching its mature shape earlier in females. This corresponded with the results obtained by the lordosis and sacral slope angles. A significant positive correlation was found between the LC shape and angles, although the angles demonstrated poor distinction between age groups, as opposed to the LC shape. Conclusion New insights into LC shape development were achieved using the geometrical morphometric method. The LC shape was sex-independent in most age groups. However, the LC reached its mature shape earlier in females than males. The method and data of this study are beneficial for future studies examining aetiological factors for spinal pathologies and maldevelopment.
Collapse
Affiliation(s)
- Ruth Pelleg-Kallevag
- Department of Physical Therapy, Zefat Academic College, Zefat, Israel
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Borgel
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Einat Kedar
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nathan Peled
- Department of Radiology, Elisha Hospital, Haifa, Israel
- Radiology Department, Carmel Medical Center, Haifa, Israel
| | - Hila May
- Department of Anatomy and Anthropology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Chalazoniti A, Lattanzi W, Halazonetis DJ. Shape variation and sex differences of the adult human mandible evaluated by geometric morphometrics. Sci Rep 2024; 14:8546. [PMID: 38609399 PMCID: PMC11014969 DOI: 10.1038/s41598-024-57617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cases of osseous defects, knowledge of the anatomy, and its age and sex-related variations, is essential for reconstruction of normal morphology. Here, we aimed at creating a 3D atlas of the human mandible in an adult sample using dense landmarking and geometric morphometrics. We segmented 50 male and 50 female mandibular surfaces from CBCT images (age range: 18.9-73.7 years). Nine fixed landmarks and 510 sliding semilandmarks were digitized on the mandibular surface, and then slid by minimizing bending energy against the average shape. Principal component analysis extracted the main patterns of shape variation. Sexes were compared with permutation tests and allometry was assessed by regressing on the log of the centroid size. Almost 49 percent of shape variation was described by the first three principal components. Shape variation was related to width, height and length proportions, variation of the angle between ramus and corpus, height of the coronoid process and inclination of the symphysis. Significant sex differences were detected, both in size and shape. Males were larger than females, had a higher ramus, more pronounced gonial angle, larger inter-gonial width, and more distinct antegonial notch. Accuracy of sexing based on the first two principal components in form space was 91 percent. The degree of edentulism was weakly related to mandibular shape. Age effects were not significant. The resulting atlas provides a dense description of mandibular form that can be used clinically as a guide for planning surgical reconstruction.
Collapse
Affiliation(s)
- Aspasia Chalazoniti
- Department of Prosthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Paediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Demetrios J Halazonetis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Morrissey P, Mentzer SM, Wurz S. The stratigraphy and formation of Middle Stone Age deposits in Cave 1B, Klasies River Main site, South Africa, with implications for the context, age, and cultural association of the KRM 41815/SAM-AP 6222 human mandible. J Hum Evol 2023; 183:103414. [PMID: 37660505 DOI: 10.1016/j.jhevol.2023.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023]
Abstract
Cave 1B, in the Klasies River Main site complex (KRM), is best known for the recovery of the KRM 41815/SAM-AP 6222 human mandible. After initial skepticism over the modernity of this specimen, it is accepted that the mix of archaic and modern traits it displays is characteristic of early Homo sapiens individuals. Different authors have associated this specimen with the Middle Stone Age (MSA) I and II/Mossel Bay cultural phases, but the published data do not allow an unambiguous attribution. KRM 41815's frequent use in studies of the evolution of the human mandible, and its well-developed chin, makes clarifying its age and context important objectives. The field and micromorphology observations presented here provide greater insight into the stratigraphy and formation of the sequence exposed in the PP38 excavation. There are three major divisions: the basal Light Brown Sand (LBS) Member (not excavated), the Rubble Sand (RS) Member (MSA I), and the Shell and Sand Dark Carbonized (SASDC) Submember (MSA II). Cultural stratigraphy based on lithic artifacts remains the only way to make secure (but broad) temporal correlations with the rest of the site complex. This investigation shows that a range of anthropogenic, geogenic, and biogenic processes contributed to the deposition and post-depositional alteration of the identified microfacies. Short depositional hiatuses are reasonably common, and a significant hiatus was identified between the RS and SASDC. The impact of post-depositional processes on the RS is significant, with anthropogenic deposits poorly preserved. In comparison, the SASDC is dominated by hearths contained within deposits rich in reworked anthropogenic materials known as carbonized partings. Small shell disposal features are also present. The distribution of these anthropogenic features suggests continuity in the management of space throughout the MSA II occupations, from before 110 ka. New stratigraphic correlations indicate that KRM 41815 is unambiguously associated with the MSA I. Therefore, it predates 110 ka, with a lower age limit potentially in Marine Isotope Stage 6.
Collapse
Affiliation(s)
- Peter Morrissey
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| | - Susan M Mentzer
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Sarah Wurz
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa; SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Wu X, Pei S, Cai Y, Tong H, Zhang Z, Yan Y, Xing S, Martinón-Torres M, Bermúdez de Castro JM, Liu W. Morphological and morphometric analyses of a late Middle Pleistocene hominin mandible from Hualongdong, China. J Hum Evol 2023; 182:103411. [PMID: 37531709 DOI: 10.1016/j.jhevol.2023.103411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 08/04/2023]
Abstract
Excavations in Hualongdong (HLD), East China, have yielded abundant hominin fossils dated to 300 ka. There is a nearly complete mandible that fits well with a partial cranium, and together they compose the skull labeled as HLD 6. Thus far, detailed morphological description and comparisons of the mandible have not been conducted. Here we present a comprehensive morphological, metric, and geometric morphometric assessment of this mandible and compare it with both adult and immature specimens of Pleistocene hominins and recent modern humans. Results indicate that the HLD 6 mandible exhibits a mosaic morphological pattern characterized by a robust corpus and relatively gracile symphysis and ramus. The moderately developed mental trigone and a clear anterior mandibular incurvation of the HLD 6 mandible are reminiscent of Late Pleistocene hominin and recent modern human morphology. However, the weak expression of all these features indicates that this mandible does not possess a true chin. Moreover, a suite of archaic features that resemble those of Middle Pleistocene hominins includes pronounced alveolar planum, superior transverse torus, thick corpus, a pronounced endocondyloid crest, and a well-developed medial pterygoid tubercle. The geometric morphometric analysis further confirms the mosaic pattern of the HLD 6 mandible. The combination of both archaic and modern human features identified in the HLD 6 mandible is unexpected, given its late Middle Pleistocene age and differs from approximately contemporaneous Homo members such as Xujiayao, Penghu, and Xiahe. This mosaic pattern has never been recorded in late Middle Pleistocene hominin fossil assemblages in East Asia. The HLD 6 mandible provides further support for the high morphological diversity during late Middle Pleistocene hominin evolution. With these findings, it is possible that modern human morphologies are present as early as 300 ka and earlier than the emergence of modern humans in East Asia.
Collapse
Affiliation(s)
- Xiujie Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Shuwen Pei
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Yanjun Cai
- Institute of Global Environmental Change, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Ziliang Zhang
- Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Yi Yan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Xing
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - María Martinón-Torres
- National Research Center on Human Evolution (CENIEH), Paseo Sierra de Atapuerca S/n, Burgos, 09002, Spain.
| | | | - Wu Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
| |
Collapse
|
5
|
Freidline SE, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Hernandez VC, McAllister-Hayward MS, McColl H, Zanolli C, Gunz P, Bergmann I, Sichanthongtip P, Sihanam D, Boualaphane S, Luangkhoth T, Souksavatdy V, Dosseto A, Boesch Q, Patole-Edoumba E, Aubaile F, Crozier F, Suzzoni E, Frangeul S, Bourgon N, Zachwieja A, Dunn TE, Bacon AM, Hublin JJ, Shackelford L, Demeter F. Early presence of Homo sapiens in Southeast Asia by 86-68 kyr at Tam Pà Ling, Northern Laos. Nat Commun 2023; 14:3193. [PMID: 37311788 DOI: 10.1038/s41467-023-38715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations.
Collapse
Affiliation(s)
- Sarah E Freidline
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Orlando, FL, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Kira E Westaway
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR, 7362, UdS CNRS, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Vito C Hernandez
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Meghan S McAllister-Hayward
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Inga Bergmann
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, PDR, Laos
| | | | | | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric & Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Françoise Aubaile
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | | | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Nicolas Bourgon
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | | | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France. 11, Place Marcelin-Berthelot, 75231, Paris, Cedex 05, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| |
Collapse
|
6
|
The Predictable Complexity of Evolutionary Allometry. Evol Biol 2022. [DOI: 10.1007/s11692-022-09581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
The relevance of late MSA mandibles on the emergence of modern morphology in Northern Africa. Sci Rep 2022; 12:8841. [PMID: 35614148 PMCID: PMC9133045 DOI: 10.1038/s41598-022-12607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
North Africa is a key area for understanding hominin population movements and the expansion of our species. It is home to the earliest currently known Homo sapiens (Jebel Irhoud) and several late Middle Stone Age (MSA) fossils, notably Kébibat, Contrebandiers 1, Dar-es-Soltane II H5 and El Harhoura. Mostly referred to as “Aterian” they fill a gap in the North African fossil record between Jebel Irhoud and Iberomaurusians. We explore morphological continuity in this region by quantifying mandibular shape using 3D (semi)landmark geometric morphometric methods in a comparative framework of late Early and Middle Pleistocene hominins (n = 15), Neanderthals (n = 27) and H. sapiens (n = 145). We discovered a set of mixed features among late MSA fossils that is in line with an accretion of modern traits through time and an ongoing masticatory gracilization process. In Northern Africa, Aterians display similarities to Iberomaurusians and recent humans in the area as well as to the Tighenif and Thomas Quarry hominins, suggesting a greater time depth for regional continuity than previously assumed. The evidence we lay out for a long-term succession of hominins and humans emphasizes North Africa’s role as source area of the earliest H. sapiens.
Collapse
|
8
|
Grine FE, Gonzalvo E, Rossouw L, Holt S, Black W, Braga J. Variation in Middle Stone Age mandibular molar enamel-dentine junction topography at Klasies River Main Site assessed by diffeomorphic surface matching. J Hum Evol 2021; 161:103079. [PMID: 34739985 DOI: 10.1016/j.jhevol.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
The morphology and variability of the Middle Stone Age (MSA) hominin fossils from Klasies River Main Site have been the focus of investigation for more than four decades. The mandibular remains have figured prominently in discussions relating to robusticity, size dimorphism, and symphyseal morphology. Variation in corpus size between the robust SAM-AP 6223 and the diminutive SAM-AP 6225 mandibles is particularly impressive, and the difference between the buccolingual diameters of their M2s significantly exceeds recent human sample variation. SAM-AP 6223 and SAM-AP 6225 are the only Klasies specimens with homologous teeth (M2 and M3) that permit comparisons of crown morphology. While the differences in dental trait expression at the outer enamel surfaces of these molars are slight, diffeomorphic surface analyses of their underlying enamel-dentine junction (EDJ) topographies reveal differences that are well beyond the means of pairwise differences among comparative samples of Later Stone Age (LSA) Khoesan and recent African homologues. The EDJs of both SAM-AP 6225 molars and the SAM-AP 6223 M3 fall outside the envelopes that define the morphospace of these two samples. Although the radiocarbon dated LSA individuals examined here differ by a maximum of some 7000 years, and the two Klasies jaws may differ by perhaps as much as 18,000 years, it is difficult to ascribe their differences to time alone. With reference to the morphoscopic traits by which the SAM-AP 6223 and SAM-AP 6225 EDJs differ, the most striking is the expression of the protoconid cingulum. This is very weakly developed on the SAM-AP 6223 molars and distinct in SAM-AP 6225. As such, this diminutive fossil exhibits a more pronounced manifestation of what is likely a plesiomorphic feature, thus adding to the morphological mosaicism that is evident in the Klasies hominin assemblage. Several possible explanations for the variation and mosaicism in this MSA sample are discussed.
Collapse
Affiliation(s)
- Frederick E Grine
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | - Elsa Gonzalvo
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France
| | - Lloyd Rossouw
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Sharon Holt
- Florisbad Quaternary Research Department, The National Museum, 36 Aliwal Street, Bloemfontein 9300, South Africa
| | - Wendy Black
- Archaeology Unit, Research and Exhibitions Department, Iziko Museums of South Africa, Cape Town, South Africa
| | - José Braga
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier Toulouse III, Faculté de Médecine Purpan, 37 Allées Jules Guesde, Toulouse, France; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|