1
|
Ziegler MJ, Robinson M, Aceituno FJ, Morcote-Ríos G, Becerra-Valdivia L, Carleton WC, Iriarte J, Roberts P. Human dietary diversity in the Colombian Andes at the terminal Pleistocene-late Holocene sites Tequendama and Aguazuque. iScience 2025; 28:111624. [PMID: 39897938 PMCID: PMC11784782 DOI: 10.1016/j.isci.2024.111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/06/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025] Open
Abstract
Understandings of spatiotemporal dispersals of Homo sapiens onto the neotropical South American landscape and their environmental interactions during the late Pleistocene to late Holocene are being refined by multidisciplinary archaeological research. The Sabana of Bogota region in Colombia hosts a concentration of occupational sites, including Tequendama (13,525-2,330 and possibly until 815 cal BP) and Aguazuque (5,900-2,750 cal BP), that offer a view into local human paleoecology. Here, we conduct radiocarbon and stable isotope analysis (δ 13C, δ 18O and δ 15N) of humans and fauna from these sites, and reveal significant interregional differences in dietary patterns through time. Specifically, individuals from Tequendama exhibit predominantly C3 diets, while individuals from Aguazuque show evidence of early C4 consumption, likely maize, around 4,400-4,200 cal BP. Stable carbon and oxygen isotope data suggest environmental stability, with periodic deviations in aridity levels within a mosaic landscape. Our study highlights the complexity of human-environment interactions in the region and contributes to a broader understanding of isotopic variability.
Collapse
Affiliation(s)
- Michael J. Ziegler
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Mark Robinson
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Francisco Javier Aceituno
- Department of Anthropology, Faculty of Social and Human Sciences, University of Antioquia, Medellín, Colombia
| | - Gaspar Morcote-Ríos
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lorena Becerra-Valdivia
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
- Linacre College, University of Oxford, Oxford, UK
| | - William C. Carleton
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - José Iriarte
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Patrick Roberts
- isoTROPIC Research Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| |
Collapse
|
2
|
Iminjili V, Fernandes R. Zanadamu: An African hominin isotopic dataset. Data Brief 2023; 50:109522. [PMID: 37701712 PMCID: PMC10493875 DOI: 10.1016/j.dib.2023.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
The present article introduces Zanadamu, a comprehensive geo-temporal-referenced dataset that amalgamates all published stable isotope carbon and oxygen measurements on tooth enamel from African hominins, dated between 4.4 and 0.005 Ma. Zanadamu serves as a research tool for investigating hominin evolution by facilitating the examination of how different hominin species explored food resources and interacted with their local paleoenvironments. The dataset is structured in a machine-readable format, and its metadata organization allows for facile statistical analyses and comparisons with other types of isotopic records, including ancient and modern humans and other primates. Zanadamu is part of the AfriArch data initiative, which aims at compiling datasets for the study of ancient Africa. This an active initiative, and we strive to update Zanadamu as novel data becomes available.
Collapse
Affiliation(s)
- Victor Iminjili
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
- Department of History, Geography and Communication, Universidad De Burgos, Paseo de Comendadores, s/n 09001, Burgos, Spain
| | - Ricardo Fernandes
- Department of Archaeology, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745, Jena, Germany
- Climate Change and History Research Initiative, Princeton University, Princeton, USA
- Arne Faculty of Arts, Masaryk University, Nováka 1, 602 00 Brno-střed, Czechia
| |
Collapse
|
3
|
MacLatchy LM, Cote SM, Deino AL, Kityo RM, Mugume AAT, Rossie JB, Sanders WJ, Cosman MN, Driese SG, Fox DL, Freeman AJ, Jansma RJW, Jenkins KEH, Kinyanjui RN, Lukens WE, McNulty KP, Novello A, Peppe DJ, Strömberg CAE, Uno KT, Winkler AJ, Kingston JD. The evolution of hominoid locomotor versatility: Evidence from Moroto, a 21 Ma site in Uganda. Science 2023; 380:eabq2835. [PMID: 37053310 DOI: 10.1126/science.abq2835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Living hominoids are distinguished by upright torsos and versatile locomotion. It is hypothesized that these features evolved for feeding on fruit from terminal branches in forests. To investigate the evolutionary context of hominoid adaptive origins, we analyzed multiple paleoenvironmental proxies in conjunction with hominoid fossils from the Moroto II site in Uganda. The data indicate seasonally dry woodlands with the earliest evidence of abundant C4 grasses in Africa based on a confirmed age of 21 million years ago (Ma). We demonstrate that the leaf-eating hominoid Morotopithecus consumed water-stressed vegetation, and postcrania from the site indicate ape-like locomotor adaptations. These findings suggest that the origin of hominoid locomotor versatility is associated with foraging on leaves in heterogeneous, open woodlands rather than forests.
Collapse
Affiliation(s)
- Laura M MacLatchy
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susanne M Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alan L Deino
- Berkeley Geochronology Center, Berkeley, CA 94709, USA
| | - Robert M Kityo
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
| | - Amon A T Mugume
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, Kampala, Uganda
- Uganda National Museum, Department of Museums and Monuments, Ministry of Tourism, Wildlife and Antiquities, Kampala, Uganda
| | - James B Rossie
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| | - William J Sanders
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven G Driese
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - David L Fox
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - April J Freeman
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Rutger J W Jansma
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Kirsten E H Jenkins
- Department of Social Sciences, Tacoma Community College, Tacoma, WA 98466, USA
| | - Rahab N Kinyanjui
- Earth Sciences Department, National Museums of Kenya, Nairobi, Kenya
- Max Planck Institute for Geoanthropology, Jena D-07743, Germany
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - William E Lukens
- Department of Geology & Environmental Science, James Madison University, Harrisonburg, VA 22807, USA
| | - Kieran P McNulty
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alice Novello
- CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE, Aix en Provence, France
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX 76798, USA
| | - Caroline A E Strömberg
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Kevin T Uno
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Alisa J Winkler
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
- Section of Anatomy, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D Kingston
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Ramírez-Pedraza I, Martínez LM, Aouraghe H, Rivals F, Tornero C, Haddoumi H, Estebaranz-Sánchez F, Rodríguez-Hidalgo A, van der Made J, Oujaa A, Ibáñez JJ, Mhamdi H, Souhir M, Aissa AM, Chacón MG, Sala-Ramos R. Multiproxy approach to reconstruct fossil primate feeding behavior: Case study for macaque from the Plio-Pleistocene site Guefaït-4.2 (eastern Morocco). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The genus Macaca belongs to Cercopithecidae (Old World monkeys), Cercopithecinae, Papionini. The presence of Macaca in North Africa is well known from the Late Miocene to the Late Pleistocene. However, the diet of fossil Macaca has been poorly described in the literature. In this study, we investigated the feeding habits of Macaca cf. sylvanus (n = 4) from the Plio-Pleistocene site Guefaït-4.2 in eastern Morocco through multiproxy analysis combining analyses of stable carbon and oxygen isotopes from tooth enamel, buccal microtexture, and low-magnification occlusal dental microwear. For both microwear analyses, we compared the macaques with a new reference collection of extant members of Cercopithecoidea. Our occlusal microwear results show for the fossil macaque a pattern similar to the extant Cercocebus atys and Lophocebus albigena, African forest-dwelling species that are characterized by a durophagous diet based mainly on hard fruit and seed intake. Buccal microtexture results also suggest the consumption of some grasses and the exploitation of more open habitats, similar to that observed in Theropithecus gelada. The δ13C of M. cf. sylvanus indicates a C3 based-diet without the presence of C4 plants typical of the savanna grassland in eastern Africa during this period. The high δ18O values of M. cf. sylvanus, compared with the contemporary ungulates recovered from Guefaït-4.2, could be associated with the consumption of a different resource by the primate such as leaves or fresh fruits from the upper part of trees. The complementarity of these methods allows for a dietary reconstruction covering a large part of the individual’s life.
Collapse
|