1
|
Tsanova T, Delvigne V, Sirakova S, Anastasova E, Horta P, Krumov I, Marreiros J, Nacheva E, Rezek Z, Hublin JJ, Sirakov N. Curated character of the Initial Upper Palaeolithic lithic artefact assemblages in Bacho Kiro Cave (Bulgaria). PLoS One 2024; 19:e0307435. [PMID: 39231140 PMCID: PMC11373871 DOI: 10.1371/journal.pone.0307435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
The dispersal of Homo sapiens across Eurasia during MIS 3 in the Late Pleistocene is marked by technological shifts and other behavioral changes, known in the archaeological record under the term of Initial Upper Paleolithic (IUP). Bacho Kiro Cave in north Bulgaria, re-excavated by us from 2015 to 2021, is one of the reference sites for this phenomenon. The newly excavated lithic assemblages dated by radiocarbon between 45,040 and 43,280 cal BP and attributed to Homo sapiens encompass more than two thousand lithic artifacts. The lithics, primarily from Layer N1-I, exist amid diverse fauna remains, human fossils, pierced animal teeth pendants, and sediment with high organic content. This article focuses on the technological aspects of the IUP lithics, covering raw material origin and use-life, blank production, on-site knapping activities, re-flaking of lithic implements, and the state of retouched lithic components. We apply petrography for the identification of silicites and other used stones. We employ chaîne opératoire and reduction sequence approaches to profile the lithics techno-typologically and explore the lithic economy, particularly blade production methods, knapping techniques, and artifact curation. Raw material analysis reveals Lower Cretaceous flints from Ludogorie and Upper Cretaceous flints from the Danube region, up to 190 km and 130 km, respectively, from Bacho Kiro Cave, indicating long-distance mobility and finished products transport. Imported lithic implements, were a result of unidirectional and bidirectional non-Levallois laminar technology, likely of volumetric concept. Systematic on-anvil techniques (bipolar knapping) and tool segmentation indicate re-flaking and reshaping of lithic implements, reflecting on-site curation and multifaceted lithic economy. A limited comparison with other IUP sites reveals certain shared features and also regional variations. Bacho Kiro Cave significantly contributes to understanding the technological and behavioral evolution of early Homo sapiens in western Eurasia.
Collapse
Affiliation(s)
- Tsenka Tsanova
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vincent Delvigne
- CNRS, UMR 8068 TEMPS, University of Paris X-Nanterre, Nanterre, France
- Service de Préhistoire, University of Liège, Liège, Belgium
| | - Svoboda Sirakova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Elka Anastasova
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Pedro Horta
- Department of History, University of Minho, Braga, Portugal
- Interdisciplinary Center for Archaeology and the Evolution of Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ivaylo Krumov
- Museum of History- Belogradchik, Belogradchik, Bulgaria
| | - João Marreiros
- TraCEr, Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, LEIZA, Mainz, Germany
| | - Elena Nacheva
- Sofia University "St. Kliment Ohridski, Sofia, Bulgaria
| | - Zeljko Rezek
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
2
|
Clark JL, Hartman G, Nilsson-Stutz L, Stutz AJ. The fauna from Mughr el-Hamamah, Jordan: Insights on human hunting behavior during the Early Upper Paleolithic. J Hum Evol 2024; 190:103518. [PMID: 38520970 DOI: 10.1016/j.jhevol.2024.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
As a corridor for population movement out of Africa, the southern Levant is a natural laboratory for research exploring the dynamics of the Middle-to-Upper Paleolithic transition. Yet, the number of well-preserved sites dating to the initial millennia of the Early Upper Paleolithic (EUP; ∼45-30 ka) remains limited, restricting the resolution at which we can study the biocultural and techno-typological changes evidenced across the transition. With EUP deposits dating to 45-39 ka cal BP, Mughr el-Hamamah, Jordan, offers a key opportunity to expand our understanding of EUP lifeways in the southern Levant. Mughr el-Hamamah is particularly noteworthy for its large faunal assemblage, representing the first such assemblage from the Jordan Valley. In this paper, we present results from taxonomic and taphonomic analyses of the EUP fauna from Mughr el-Hamamah. Given broader debates about shifts in human subsistence across the Middle-to-Upper Paleolithic transition, we also assess evidence for subsistence intensification, focusing especially on the exploitation of gazelle and the use of small game. Taphonomic data suggest that the fauna was primarily accumulated by human activity. Ungulates dominate the assemblage; gazelle (Gazella sp.) is the most common taxa, followed by fallow deer (Dama mesopotamica) and goat (Capra sp.). Among the gazelle, juveniles account for roughly one-third of the sample. While the focus on gazelle and the frequency of juveniles are consistent with broader regional trends, evidence for the regular exploitation of marrow from gazelle phalanges suggests that the EUP occupants of Mughr el-Hamamah processed gazelle carcasses quite intensively. Yet, the overall degree of dietary intensification appears low-small game is rare and evidence for human capture of this game is more equivocal. As a whole, our results support a growing body of data showing gradual shifts in animal exploitation strategies across the Middle-to-Upper Paleolithic transition in the southern Levant.
Collapse
Affiliation(s)
- Jamie L Clark
- Department of Sociology and Anthropology, George Mason University, 4400 University Drive MS3G5, Fairfax, VA, 22030, USA; Institute for Archaeological Sciences, Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany.
| | - Gideon Hartman
- Department of Anthropology, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, Connecticut, 06226, USA
| | - Liv Nilsson-Stutz
- Department of Cultural Sciences, The Linnaeus University, S 351 95, Växjö, Sweden
| | - Aaron J Stutz
- Bohusläns Museum, Box 403, SE-451 19, Uddevalla, Sweden
| |
Collapse
|
3
|
Smith GM, Ruebens K, Zavala EI, Sinet-Mathiot V, Fewlass H, Pederzani S, Jaouen K, Mylopotamitaki D, Britton K, Rougier H, Stahlschmidt M, Meyer M, Meller H, Dietl H, Orschiedt J, Krause J, Schüler T, McPherron SP, Weiss M, Hublin JJ, Welker F. The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat Ecol Evol 2024; 8:564-577. [PMID: 38297138 PMCID: PMC10927544 DOI: 10.1038/s41559-023-02303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Recent excavations at Ranis (Germany) identified an early dispersal of Homo sapiens into the higher latitudes of Europe by 45,000 years ago. Here we integrate results from zooarchaeology, palaeoproteomics, sediment DNA and stable isotopes to characterize the ecology, subsistence and diet of these early H. sapiens. We assessed all bone remains (n = 1,754) from the 2016-2022 excavations through morphology (n = 1,218) or palaeoproteomics (zooarchaeology by mass spectrometry (n = 536) and species by proteome investigation (n = 212)). Dominant taxa include reindeer, cave bear, woolly rhinoceros and horse, indicating cold climatic conditions. Numerous carnivore modifications, alongside sparse cut-marked and burnt bones, illustrate a predominant use of the site by hibernating cave bears and denning hyaenas, coupled with a fluctuating human presence. Faunal diversity and high carnivore input were further supported by ancient mammalian DNA recovered from 26 sediment samples. Bulk collagen carbon and nitrogen stable isotope data from 52 animal and 10 human remains confirm a cold steppe/tundra setting and indicate a homogenous human diet based on large terrestrial mammals. This lower-density archaeological signature matches other Lincombian-Ranisian-Jerzmanowician sites and is best explained by expedient visits of short duration by small, mobile groups of pioneer H. sapiens.
Collapse
Affiliation(s)
- Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- School of Anthropology and Conservation, University of Kent, Kent, UK.
| | - Karen Ruebens
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Elena Irene Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London, UK
| | - Sarah Pederzani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeological Micromorphology and Biomarker Lab, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Klervia Jaouen
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées (OMP), Toulouse, France
| | - Dorothea Mylopotamitaki
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Kate Britton
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | - Mareike Stahlschmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Holger Dietl
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Jörg Orschiedt
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Shannon P McPherron
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Mylopotamitaki D, Weiss M, Fewlass H, Zavala EI, Rougier H, Sümer AP, Hajdinjak M, Smith GM, Ruebens K, Sinet-Mathiot V, Pederzani S, Essel E, Harking FS, Xia H, Hansen J, Kirchner A, Lauer T, Stahlschmidt M, Hein M, Talamo S, Wacker L, Meller H, Dietl H, Orschiedt J, Olsen JV, Zeberg H, Prüfer K, Krause J, Meyer M, Welker F, McPherron SP, Schüler T, Hublin JJ. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature 2024; 626:341-346. [PMID: 38297117 PMCID: PMC10849966 DOI: 10.1038/s41586-023-06923-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.
Collapse
Affiliation(s)
- Dorothea Mylopotamitaki
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany.
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London, UK
| | - Elena Irene Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | - Arev Pelin Sümer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Karen Ruebens
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Bordeaux, France
| | - Sarah Pederzani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeological Micromorphology and Biomarker Lab, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Florian S Harking
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Huan Xia
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Jakob Hansen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - André Kirchner
- Department of Soil Protection and Soil Survey, State Authority for Mining, Energy and Geology of Lower Saxony (LBEG), Hannover, Germany
| | - Tobias Lauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Terrestrial Sedimentology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Mareike Stahlschmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology and Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Michael Hein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Ecology, Leuphana University, Lüneburg, Germany
- Historical Anthropospheres Working Group, Leipzig Lab, Leipzig University, Leipzig, Germany
| | - Sahra Talamo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Bologna University, Bologna, Italy
| | - Lukas Wacker
- Ion Beam Physics, ETH Zurich, Zurich, Switzerland
| | - Harald Meller
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Holger Dietl
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jesper V Olsen
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Jean-Jacques Hublin
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France.
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
5
|
Initial Upper Paleolithic bone technology and personal ornaments at Bacho Kiro Cave (Bulgaria). J Hum Evol 2022; 167:103198. [DOI: 10.1016/j.jhevol.2022.103198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
6
|
Sinet-Mathiot V, Martisius NL, Schulz-Kornas E, van Casteren A, Tsanova TR, Sirakov N, Spasov R, Welker F, Smith GM, Hublin JJ. The effect of eraser sampling for proteomic analysis on Palaeolithic bone surface microtopography. Sci Rep 2021; 11:23611. [PMID: 34880290 PMCID: PMC8655045 DOI: 10.1038/s41598-021-02823-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bone surface modifications are crucial for understanding human subsistence and dietary behaviour, and can inform about the techniques employed in the production and use of bone tools. Permission to destructively sample such unique artefacts is not always granted. The recent development of non-destructive proteomic extraction techniques has provided some alternatives for the analysis of rare and culturally significant artefacts, including bone tools and personal ornaments. The Eraser Extraction Method (EEM), first developed for ZooMS analysis of parchment, has recently been applied to bone and ivory specimens. To test the potential impact of the EEM on ancient bone surfaces, we analyse six anthropogenically modified Palaeolithic bone specimens from Bacho Kiro Cave (Bulgaria) through a controlled sampling experiment using qualitative and 3D quantitative microscopy. Although the overall bone topography is generally preserved, our findings demonstrate a slight flattening of the microtopography alongside the formation of micro-striations associated with the use of the eraser for all bone specimens. Such modifications are similar to ancient use-wear traces. We therefore consider the EEM a destructive sampling approach for Palaeolithic bone surfaces. Together with low ZooMS success rates in some of the reported studies, the EEM might not be a suitable approach to taxonomically identify Pleistocene bone specimens.
Collapse
Affiliation(s)
- Virginie Sinet-Mathiot
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Naomi L. Martisius
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.267360.60000 0001 2160 264XDepartment of Anthropology, The University of Tulsa, Tulsa, OK USA
| | - Ellen Schulz-Kornas
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Adam van Casteren
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tsenka R. Tsanova
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nikolay Sirakov
- grid.410344.60000 0001 2097 3094National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rosen Spasov
- grid.5507.70000 0001 0740 5199Archaeology Department, New Bulgarian University, Sofia, Bulgaria
| | - Frido Welker
- grid.5254.60000 0001 0674 042XSection for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Geoff M. Smith
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- grid.419518.00000 0001 2159 1813Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany ,grid.410533.00000 0001 2179 2236Collège de France, Paris, France
| |
Collapse
|