1
|
Li W, Gao M, Yu J. Rising prevalence and drug resistance of Corynebacterium striatum in lower respiratory tract infections. Front Cell Infect Microbiol 2025; 14:1526312. [PMID: 39839260 PMCID: PMC11747479 DOI: 10.3389/fcimb.2024.1526312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Corynebacterium striatum (C. striatum) is a Gram-positive bacterium commonly colonizing the skin and mucosa in healthy individuals and hospitalized patients. Traditionally regarded as a contaminant, C. striatum is now increasingly recognized as a potential cause of clinical infections, especially after the coronavirus disease pandemic. It has emerged as a pathogen implicated in severe infections, including pneumonia, bacteremia, meningitis, artificial joint infections, abdominal infections, and endocarditis. C. striatum has been reported in lower respiratory tract infections, mostly as a conditioned pathogen in immunocompromised individuals, particularly in those with chronic structural lung diseases, such as chronic obstructive pulmonary disease, leading to severe pneumonia or exacerbation of the existing disease and high mortality. Additionally, C striatum has been implicated in the community-acquired pneumonia among immunocompetent individuals and nosocomial lung infections, with evidence of person-to-person transmission through caregivers. C. striatum may exhibit multidrug resistance. Vancomycin, alone or in combination, is currently considered the most effective treatment for C. striatum. This review highlights the epidemiological characteristics, drug resistance mechanisms, diagnostics approaches, and treatment options for C. striatum lower respiratory tract infections to enhance clinician awareness and improve patient management strategies.
Collapse
Affiliation(s)
- Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Mingyue Gao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Li H, Zhao Z, Shi M, Luo B, Wang G, Wang X, Gu J, Song Z, Sun Y, Zhang L, Wang J. Metagenomic binning analyses of swine manure composting reveal mechanism of nitrogen cycle amendment using kaolin. BIORESOURCE TECHNOLOGY 2024; 393:130156. [PMID: 38056679 DOI: 10.1016/j.biortech.2023.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The efficient control of nitrogen loss in composting and the enhancement of product quality have become prominent concerns in current research. The positive role of varying concentrations kaolin in reducing nitrogen loss during composting was revealed using metagenomic binning combined with reverse transcription quantitative polymerase chain reaction. The results indicated that the addition of 0.5 % kaolin significantly (P < 0.05) up-regulated the expression of nosZ and nifH on day 35, while concurrently reducing norB abundance, resulting in a reduction of NH3 and N2O emissions by 61.4 % and 17.5 %, respectively. Notably, this study represents the first investigation into the co-occurrence of nitrogen functional genes and heavy metal resistance genes within metagenomic assembly genomes during composting. Emerging evidence indicates that kaolin effectively impedes the binding of Cu/Zn to nirK and nosZ gene reductases through passivation. This study offers a novel approach to enhance compost quality and waste material utilization.
Collapse
Affiliation(s)
- Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; China Construction Sixth Division Construction & Development Co., Ltd., Tianjin 300450, China
| | - Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Water Conservancy and Architectural Engineering, Tarim University, Alar 843300, China
| | - Bin Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangdong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Meng Y, Zhang X, Zhang Z, Li J, Zheng P, Li J, Xu J, Xian J, Lu Y. Effects of Microorganisms on Growth Performance, Body Composition, Digestive Enzyme Activity, Intestinal Bacteria Flora and Antimicrobial Peptide (AMP) Content of Black Soldier Fly Larvae ( Hermetia illucens). Animals (Basel) 2023; 13:2722. [PMID: 37684985 PMCID: PMC10487262 DOI: 10.3390/ani13172722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS), Rhodopseudomonas palustris (RP), Saccharomyces cerevisiae (SC) and Lactobacillus plantarum (LP) were selected as feed additives for black soldier fly (Hermetia illucens) by tracking the growth performance, proximate composition, digestive ability and antibacterial peptides (AMPs) content in the first trial. Microorganism efficiency screening results showed that RP could improve growth performance, digestive ability and AMP content of H. illucens. Therefore, RP was selected to prepare the diets and was incorporated into diets for H. illucens at levels of 0 (R0), 1.22 × 106 (R1), 1.22 × 107 (R2), 1.22 × 108 (R3), 1.22 × 109 (R4) and 1.22 × 1010 (R5) CFU/g. After 5 d of feeding, larvae fed the R2-R5 diets had higher weight gain and specific growth rates. Different concentrations of RP had no significant effect on larval body composition. R4-R5 could improve the digestibility and expression of AMPs in larvae. Moreover, RP could significantly increase the abundance of Lactobacillus and Rhodopseudomonas and decrease the abundance of Proteus and Corynebacterium. Therefore, RP is superior to the other strains as a feed additive for H. illucens larvae, and we recommend the addition of 1.22 × 109-1.22 × 1010 CFU/g RP to promote the growth and AMP content of H. illucens.
Collapse
Affiliation(s)
- Yongqi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Ocean College, Hainan University, Haikou 570228, China
| | - Xiuxia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Zelong Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jiajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Peihua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Juntao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jiarui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianan Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Ocean College, Hainan University, Haikou 570228, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yaopeng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| |
Collapse
|
4
|
Li Y, Rong J, Gao C. Phylogenetic analyses of antimicrobial resistant Corynebacterium striatum strains isolated from a nosocomial outbreak in a tertiary hospital in China. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01855-8. [PMID: 37368178 PMCID: PMC10371919 DOI: 10.1007/s10482-023-01855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Corynebacterium striatum is an emerging, multidrug-resistant pathogen that frequently causes nosocomial infections worldwide. This study aimed to investigate phylogenetic relationship and presence of genes responsible for antimicrobial resistance among C. striatum strains associated with an outbreak at the Shanxi Bethune Hospital, China, in 2021. Fecal samples were collected from 65 patients with C. striatum infection at Shanxi Bethune Hospital between February 12, 2021 and April 12, 2021. C. striatum isolates were identified by 16S rRNA and rpoB gene sequencing. E-test strips were used to examine the antimicrobial susceptibility of the isolates. Whole-genome sequencing and bioinformatics analysis were employed to assess the genomic features and identify antimicrobial resistance genes of the isolates. Crystal violet staining was conducted to determine the ability of biofilm formation of each isolate. A total of 64 C. striatum isolates were identified and categorized into 4 clades based on single nucleotide polymorphisms. All isolates were resistant to penicillin, meropenem, ceftriaxone, and ciprofloxacin but susceptible to vancomycin and linezolid. Most isolates were also resistant to tetracycline, clindamycin, and erythromycin, with susceptibility rates of 10.77, 4.62, and 7.69%, respectively. Genomic analysis revealed 14 antimicrobial resistance genes in the isolates, including tetW, ermX, and sul1. Crystal violet staining showed that all isolates formed biofilms on the abiotic surface. Four clades of multidrug-resistant C. striatum spread in our hospitals possibly due to the acquisition of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Yuchuan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianrong Rong
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Wang Z, Dalton KR, Lee M, Parks CG, Beane Freeman LE, Zhu Q, González A, Knight R, Zhao S, Motsinger-Reif AA, London SJ. Metagenomics reveals novel microbial signatures of farm exposures in house dust. Front Microbiol 2023; 14:1202194. [PMID: 37415812 PMCID: PMC10321240 DOI: 10.3389/fmicb.2023.1202194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Indoor home dust microbial communities, important contributors to human health, are shaped by environmental factors, including farm-related exposures. Advanced metagenomic whole genome shotgun sequencing (WGS) improves detection and characterization of microbiota in the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). We hypothesized that the improved characterization of indoor dust microbial communities by WGS will enhance detection of exposure-outcome associations. The objective of this study was to identify novel associations of environmental exposures with the dust microbiome from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas, was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota. These findings can inform the design of future studies in environmental health.
Collapse
Affiliation(s)
- Ziyue Wang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Kathryn R. Dalton
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Mikyeong Lee
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Christine G. Parks
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qiyun Zhu
- School of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Antonio González
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Stephanie J. London
- Genomics and the Environment in Respiratory and Allergic Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
6
|
Orosz L, Lengyel G, Makai K, Burián K. Prescription of Rifampicin for Staphylococcus aureus Infections Increased the Incidence of Corynebacterium striatum with Decreased Susceptibility to Rifampicin in a Hungarian Clinical Center. Pathogens 2023; 12:pathogens12030481. [PMID: 36986404 PMCID: PMC10058903 DOI: 10.3390/pathogens12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have suggested a role for Corynebacterium striatum as an opportunistic pathogen. The authors have conducted a retrospective study at the Clinical Center of the University of Szeged, Hungary, between 2012 and 2021 that revealed significantly increased rifampicin resistance in this species. This work aimed to investigate the reasons behind this phenomenon. The data were collected corresponding to the period between 1 January 2012 and 31 December 2021 at the Department of Medical Microbiology, University of Szeged. To characterize the resistance trends, the antibiotic resistance index was calculated for each antibiotic in use. Fourteen strains with different resistance patterns were further analyzed with Fourier-transform infrared spectroscopy using the IR Biotyper®. The decline in C. striatum sensitivity to rifampicin seen during the COVID-19 pandemic may have been attributable to the use of Rifadin® to treat concomitant Staphylococcus aureus infections. The fact that the IR Biotyper® typing method revealed that the rifampicin-resistant C. striatum strains were closely related supports this hypothesis. The IR Biotyper® infrared spectroscopy proved to be a modern and fast method to support effective antimicrobial stewardship programs.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| | - György Lengyel
- Infection Control Department, Semmelweis University, H-1085 Budapest, Hungary
| | - Klára Makai
- Central Pharmacy of Albert Szent-Györgyi Health Center, University of Szeged, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
7
|
Kang Y, Chen S, Zheng B, Du X, Li Z, Tan Z, Zhou H, Huang J, Tian L, Zhong J, Ma X, Li F, Yao J, Wang Y, Zheng M, Li Z. Epidemiological Investigation of Hospital Transmission of Corynebacterium striatum Infection by Core Genome Multilocus Sequence Typing Approach. Microbiol Spectr 2023; 11:e0149022. [PMID: 36537812 PMCID: PMC9927548 DOI: 10.1128/spectrum.01490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Corynebacterium striatum has recently received increasing attention due to its multiple antimicrobial resistances and its role as an invasive infection/outbreak agent. Recently, whole-genome sequencing (WGS)-based core genome multilocus sequence typing (cgMLST) has been used in epidemiological studies of specific human pathogens. However, this method has not been reported in studies of C. striatum. In this work, we aim to propose a cgMLST scheme for C. striatum. All publicly available C. striatum genomes, 30 C. striatum strains isolated from the same hospital, and 1 epidemiologically unrelated outgroup C. striatum strain were used to establish a cgMLST scheme targeting 1,795 genes (hereinafter referred to as 1,795-cgMLST). The genotyping results of cgMLST showed good congruence with core genome-based single-nucleotide polymorphism typing in terms of tree topology. In addition, the cgMLST provided a greater discrimination than the MLST method based on 6 housekeeping genes (gyrA, gyrB, hsp65, rpoB, secA1, and sodA). We established a clonal group (CG) threshold based on 104 allelic differences; a total of 56 CGs were identified from among 263 C. striatum strains. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying closely related isolates that could give clues on hospital transmission. According to the results of analysis of drug-resistant genes and virulence genes, we identified CG4, CG5, CG26, CG28, and CG55 as potentially hypervirulent and multidrug-resistant CGs of C. striatum. This study provides valuable genomic epidemiological data on the diversity, resistance, and virulence profiles of this potentially pathogenic microorganism. IMPORTANCE Recently, WGS of many human and animal pathogens has been successfully used to investigate microbial outbreaks. The cgMLST schema are powerful genotyping tools that can be used to investigate potential epidemics and provide classification of the strains precise and reliable. In this study, we proposed the development of a cgMLST typing scheme for C. striatum, and then we evaluated this scheme for its applicability to hospital transmission investigations. This report describes the first cgMLST schema for C. striatum. The analysis of hospital transmission of C. striatum based on cgMLST methods has important clinical epidemiological significance for improving nosocomial infection monitoring of C. striatum and in-depth understanding of its nosocomial transmission routes.
Collapse
Affiliation(s)
- Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shenglin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Beijia Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xiaoli Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizhou Tan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Huang
- Institute for the Prevention and Control of Infectious Diseases, Xinjiang Center for Disease Control and Prevention, Urumqi, Xinjiang, China
| | - Leihao Tian
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Jiaxin Zhong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Fang Li
- Department of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jiang Yao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- Department of Clinical Laboratory Medicine, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Zhang C, Xu T, Lin L, Shaukat A, Tong X, Yue K, Cao Q, Zhang C, Liu F, Huang S. Morinda officinalis Polysaccharides Ameliorates Bone Growth by Attenuating Oxidative Stress and Regulating the Gut Microbiota in Thiram-Induced Tibial Dyschondroplasia Chickens. Metabolites 2022; 12:958. [PMID: 36295860 PMCID: PMC9609565 DOI: 10.3390/metabo12100958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia (TD) occurs in chickens and other fast-growing birds, affecting their cartilage growth and leading to reduced meat quality in broilers. Morinda officinalis polysaccharide (MOP) is one of the chief active components of Morinda officinalis, which promotes bone formation, inhibiting bone loss and having anti-oxidant and anti-inflammatory properties. A total of 120 AA chickens were randomly divided into the CON group (basal diet), TD group (100 mg/kg thiram + basal diet), and MOP group (100 mg/kg thiram + basal diet + water with 500 mg/kg MOP). The experiment lasted 21 days. The results showed that MOP could alleviates broiler lameness caused by TD, restore the morphological structure of tibial growth plate (TGP), increase tibial weight (p < 0.05), balance the disorder of calcium and phosphorus metabolism, and promote bone formation by increasing the expression of BMP-2, Smad4, and Runx2 genes In addition, MOP supplementation stimulated the secretion of plasma antioxidant enzymes (T-SOD and GSH-Px) by regulating the expression of SOD and GPX-1 genes, thereby enhancing the antioxidant capacity of TD broilers. Interestingly, we observed MOP can also improve gut microbiota by increasing the beneficial bacteria count and decreasing the harmful bacteria count. These findings indicated that MOP can regulate bone formation through the BMP/Smads signaling pathway, attenuating oxidative stress and regulating the gut microbiota of TD broilers, so as to achieve the effect of treating TD. This suggests that MOP might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Chaodong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Luxi Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ke Yue
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shucheng Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
9
|
Corynebacterium striatum-Got Worse by a Pandemic? Pathogens 2022; 11:pathogens11060685. [PMID: 35745539 PMCID: PMC9230073 DOI: 10.3390/pathogens11060685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
The role of Corynebacterium striatum has been demonstrated in different nosocomial infections. An increasing number of publications have demonstrated its virulence in the respiratory tract, especially in the immunosuppressed patient population. The number of these patients has increased significantly during the COVID-19 pandemic. For this reason, we aimed to investigate the prevalence and antimicrobial resistance pattern of this species between 2012 and 2021 at the Clinical Center of the University of Szeged, Hungary. Altogether, 498 positive samples were included from 312 patients during the study period. On the isolates, 4529 antibiotic susceptibility tests were performed. Our data revealed that the prevalence of C. striatum increased during the COVID-19 pandemic, the rise occurred in respiratory, blood culture, and superficial samples. During the study period, the rifampicin resistance significantly increased, but others have also changed dynamically, including linezolid. The species occurred with diverse and changing co-pathogens in the COVID-19 era. However, the increasing rifampicin and linezolid resistance of C. striatum was probably not due to the most commonly isolated co-pathogens. Based on resistance predictions, vancomycin is likely to remain the only effective agent currently in use by 2030.
Collapse
|
10
|
Mhade S, Panse S, Tendulkar G, Awate R, Narasimhan Y, Kadam S, Yennamalli RM, Kaushik KS. AMPing Up the Search: A Structural and Functional Repository of Antimicrobial Peptides for Biofilm Studies, and a Case Study of Its Application to Corynebacterium striatum, an Emerging Pathogen. Front Cell Infect Microbiol 2021; 11:803774. [PMID: 34976872 PMCID: PMC8716830 DOI: 10.3389/fcimb.2021.803774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recognized for their ability to target processes important for biofilm formation. Given the vast array of AMPs, identifying potential anti-biofilm candidates remains a significant challenge, and prompts the need for preliminary in silico investigations prior to extensive in vitro and in vivo studies. We have developed Biofilm-AMP (B-AMP), a curated 3D structural and functional repository of AMPs relevant to biofilm studies. In its current version, B-AMP contains predicted 3D structural models of 5544 AMPs (from the DRAMP database) developed using a suite of molecular modeling tools. The repository supports a user-friendly search, using source, name, DRAMP ID, and PepID (unique to B-AMP). Further, AMPs are annotated to existing biofilm literature, consisting of a vast library of over 10,000 articles, enhancing the functional capabilities of B-AMP. To provide an example of the usability of B-AMP, we use the sortase C biofilm target of the emerging pathogen Corynebacterium striatum as a case study. For this, 100 structural AMP models from B-AMP were subject to in silico protein-peptide molecular docking against the catalytic site residues of the C. striatum sortase C protein. Based on docking scores and interacting residues, we suggest a preference scale using which candidate AMPs could be taken up for further in silico, in vitro and in vivo testing. The 3D protein-peptide interaction models and preference scale are available in B-AMP. B-AMP is a comprehensive structural and functional repository of AMPs, and will serve as a starting point for future studies exploring AMPs for biofilm studies. B-AMP is freely available to the community at https://b-amp.karishmakaushiklab.com and will be regularly updated with AMP structures, interaction models with potential biofilm targets, and annotations to biofilm literature.
Collapse
Affiliation(s)
- Shreeya Mhade
- Department of Bioinformatics, Guru Nanak Khalsa College of Arts, Science and Commerce (Autonomous), Mumbai, India
| | - Stutee Panse
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, College State, PA, United States
| | - Gandhar Tendulkar
- Department of Bioinformatics, Sir Sitaram and Lady Shantabai Patkar College of Arts and Science and V P Varde College of Commerce and Economics (Autonomous), Mumbai, India
| | - Rohit Awate
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | - Yatindrapravanan Narasimhan
- Department of Bioinformatics, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA), Deemed to Be University, Thanjavur, India
| | - Snehal Kadam
- Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Ragothaman M. Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA), Deemed to Be University, Thanjavur, India
| | | |
Collapse
|
11
|
Gotoh K, Mayura IPB, Enomoto Y, Iio K, Matsushita O, Otsuka F, Hagiya H. Detection of in-frame mutation by IS30-family insertion sequence in the phospholipid phosphatidylglycerol synthase gene (pgsA2) of high-level daptomycin-resistant Corynebacterium striatum. Eur J Clin Microbiol Infect Dis 2021; 41:331-333. [PMID: 34671843 DOI: 10.1007/s10096-021-04369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of high-level daptomycin (DAP)-resistant (HLDR) Corynebacterium striatum has been reported as a result of loss-of-function point mutations or premature stop codon mutations in a responsible gene, pgsA2. We herein describe the novel detection of an HLDR C. striatum clinical isolate, in which IS30-insertion was corroborated to cause destruction of pgsA2 gene. We isolated an HLDR C. striatum from a critically ill patient with underlying mycosis fungoides who had been treated with DAP for 10 days. With a sequence investigation, IS30-insertion was discovered to split pgsA2 in the HLDR C. striatum strain, which may cause disrupted phospholipid phosphatidylglycerol (PG) production. Future studies should survey the prevalence of IS-mediated gene inactivation among HLDR C. striatum clinical isolates.
Collapse
Affiliation(s)
- Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - I Putu Bayu Mayura
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yusaku Enomoto
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
12
|
Leyton B, Ramos JN, Baio PVP, Veras JFC, Souza C, Burkovski A, Mattos-Guaraldi AL, Vieira VV, Abanto Marin M. Treat Me Well or Will Resist: Uptake of Mobile Genetic Elements Determine the Resistome of Corynebacterium striatum. Int J Mol Sci 2021; 22:7499. [PMID: 34299116 PMCID: PMC8304765 DOI: 10.3390/ijms22147499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium striatum, a bacterium that is part of the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and in-hospital and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. However, there are no studies about the genomic determinants related to antimicrobial resistance in C. striatum. This review updates global information related to antimicrobial resistance found in C. striatum and highlights the essential genomic aspects in its persistence and dissemination. The resistome of C. striatum comprises chromosomal and acquired elements. Resistance to fluoroquinolones and daptomycin are due to mutations in chromosomal genes. Conversely, resistance to macrolides, tetracyclines, phenicols, beta-lactams, and aminoglycosides are associated with mobile genomic elements such as plasmids and transposons. The presence and diversity of insertion sequences suggest an essential role in the expression of antimicrobial resistance genes (ARGs) in genomic rearrangements and their potential to transfer these elements to other pathogens. The present study underlines that the resistome of C. striatum is dynamic; it is in evident expansion and could be acting as a reservoir for ARGs.
Collapse
Affiliation(s)
- Benjamin Leyton
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Juliana Nunes Ramos
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Paulo Victor Pereira Baio
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - João Flávio Carneiro Veras
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - Cassius Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Andreas Burkovski
- Department of Biology, Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany;
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro—LDCIC/FCM/UERJ, Rio de Janeiro 20550-170, Brazil; (C.S.); (A.L.M.-G.)
| | - Verônica Viana Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-361, Brazil; (J.N.R.); (P.V.P.B.); (J.F.C.V.); (V.V.V.)
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
13
|
Zhu L, Gao M, Li H, Deng ZY, Zhang B, Fan Y. Effects of soluble dietary fiber from sweet potato dregs on the structures of intestinal flora in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Silva-Santana G, Silva CMF, Olivella JGB, Silva IF, Fernandes LMO, Sued-Karam BR, Santos CS, Souza C, Mattos-Guaraldi AL. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976-2020. Arch Microbiol 2021; 203:1863-1880. [PMID: 33625540 PMCID: PMC7903872 DOI: 10.1007/s00203-021-02246-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 01/01/2023]
Abstract
Corynebacterium striatum is part of microbiota of skin and nasal mucosa of humans and has been increasingly reported as the etiologic agent of community-acquired and nosocomial diseases. Antimicrobial multidrug-resistant (MDR) C. striatum strains have been increasingly related to various nosocomial diseases and/or outbreaks worldwide, including fatal invasive infections in immunosuppressed and immunocompetent patients. Although cases of infections by C. striatum still neglected in some countries, the improvement of microbiological techniques and studies led to the increase of survival of patients with C. striatum nosocomial infections at different levels of magnitude. Biofilm formation on abiotic surfaces contributes for the persistence of virulent C. striatum and dissemination of antimicrobial resistance in hospital environment. Besides that, empirical antibiotic therapy can select multi-resistant strains and transfer intra and interspecies genes horizontally. In this study, a worldwide survey of C. striatum human infections and nosocomial outbreaks was accomplished by the analysis of clinical–epidemiological and microbiological features of reported cases from varied countries, during a 44-year period (1976–2020).
Collapse
Affiliation(s)
- Giorgio Silva-Santana
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil.
- Health Sciences Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil.
| | - Cecília Maria Ferreira Silva
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Julianna Giordano Botelho Olivella
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Igor Ferreira Silva
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Laís Menegoi Oliveira Fernandes
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Bruna Ribeiro Sued-Karam
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Cíntia Silva Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Cassius Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Faculty of Medical Sciences, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health, Rio de Janeiro, Brazil
- Health Sciences Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Góes, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Guo H, Gu J, Wang X, Song Z, Qian X, Sun W, Nasir M, Yu J. Negative effects of oxytetracycline and copper on nitrogen metabolism in an aerobic fermentation system: Characteristics and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123890. [PMID: 33264956 DOI: 10.1016/j.jhazmat.2020.123890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Aerobic fermentation is a sustainable option for livestock waste treatment, but little is known about the microbial mechanism that allows oxytetracycline (OTC) and copper (Cu) to affect nitrogen metabolism during aerobic fermentation. In this study, contamination with OTC and Cu alone or in combination reduced the total nitrogen (TN) content of the fermentation products. Metagenomic analysis demonstrated that the contribution of microorganisms to nitrogen metabolism changed significantly in different stages of fermentation. OTC and Cu affected the formation and utilization pattern of NO2--N by microorganisms, which were mainly responsible for the reduced N2O emissions. In the presence of OTC and/or Cu, Myxococcus_stipitatus, Myxococcus_xanthus, and Gimesia_maris were evidently enriched at the end of fermentation, and their increased roles in the dissimilatory reduction of nitrite to ammonium were confirmed by network analysis. Ardenticatena_maritima was the main contributor to denitrification (NO3--N to NO). Furthermore, organic matter (OM) was the most important factor responsible for driving the variation in nitrogen-transforming microorganisms and controlling denitrification. OTC affected the formation of OM, which can directly affect TN (λ = -0.37, p < 0.001), and the adverse impact of Cu on nirK- and nifH-dominant microorganisms was validated (p < 0.05).
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Souza CD, Mota HF, Faria YV, Cabral FDO, Oliveira DRD, Sant'Anna LDO, Nagao PE, Santos CDS, Moreira LO, Mattos-Guaraldi AL. Resistance to Antiseptics and Disinfectants of Planktonic and Biofilm-Associated Forms of Corynebacterium striatum. Microb Drug Resist 2020; 26:1546-1558. [PMID: 32429830 DOI: 10.1089/mdr.2019.0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disinfection and antisepsis are of primary importance in controlling nosocomial infections and outbreaks by pathogens expressing multiple resistance to antimicrobial agents (multidrug-resistant [MDR]) used in therapy. Nowadays, infections related to health services (HAIs) due to MDR and multidrug-susceptible (MDS) Corynebacterium striatum should not be underestimated, including patients using invasive medical devices. The virulence potential of C. striatum needs further investigation. Currently, susceptibility profiles of planktonic and/or sessile forms of four C. striatum strains of different pulsed-field gel electrophoresis types were examined as biocides based on the manufacturer's recommendations: 2% glutaraldehyde (GA), 2% peracetic acid (PA), 1% potassium monopersulfate (Virkon®; VK), 1% sodium hypochlorite (SH), and 70% ethyl alcohol (ET). Time-kill assays using 2% bovine serum albumin (BSA) were performed for evaluation of influence of organic matter on biocides effects. Planktonic forms expressed GA resistance at different levels. C. striatum viability was observed until 2, 4, 20, and 30 min for MDR 2369/II, MDS 1954/IV, MDR 1987/I, and MDS 1961/III strains, respectively. In contrast to GA, the biocides PA, VK24h, SH, and ET had higher effective bacterial mortality. However, storage of VK (48 hr) reduced their biocide activities. Moreover, mature biofilms were produced on abiotic substrates, including steel surfaces. Post-treatment with GA (30 min), survival of sessile forms was ≥100% than planktonic forms of all C. striatum tested strains. Independent of biocides tested, BSA increased the survival of planktonic and sessile forms (p ≤ 0.005). Present data indicated that hospital staff should be aware of dissemination and eradication of HAIs by C. striatum presenting resistance to biocides, including high-level disinfectants, such as GA.
Collapse
Affiliation(s)
- Cassius de Souza
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Higor Franceschi Mota
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Yuri Vieira Faria
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Fellipe de Oliveira Cabral
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Dryelle Rodrigues de Oliveira
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia da Silva Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| | - Lílian Oliveira Moreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance (LDCIC), Faculdade de Ciências Médicas (FCM), Universidade do Estado do Rio de Janeiro (UERJ), The Collaborating Centre for Reference and Research on Diphtheria/National Health Foundation/Ministry of Health-FNS/MS, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Hagiya H, Kimura K, Okuno H, Hamaguchi S, Morii D, Yoshida H, Mitsui T, Nishi I, Tomono K. Bacteremia due to high-level daptomycin-resistant Corynebacterium striatum: A case report with genetic investigation. J Infect Chemother 2019; 25:906-908. [PMID: 31101531 DOI: 10.1016/j.jiac.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022]
Abstract
Corynebacterium striatum, generally considered an opportunistic organism in humans, has recently been known to develop high-level daptomycin resistance (HLDR) shortly after drug exposure. To date, however, only several such clinical isolates have been described in the literature and clinical background of the resistant pathogen remains to be elucidated. Here, we report a case involving a C. striatum strain with HLDR harboring novel nucleotide mutations, together with a review of the relevant literature. To the best of our knowledge, this is the first well-investigated clinical report from Japan including a genetic investigation. Considering the rapid emergence of HLDR C. striatum in vitro experiment, there could be a number of underreporting cases. Scrupulous attention is required when administering daptomycin for the treatment of C. striatum infections, even if the organism has initially exhibited susceptibility.
Collapse
Affiliation(s)
- Hideharu Hagiya
- Division of Infection Control and Prevention, Osaka University Hospital, Japan.
| | - Keigo Kimura
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Hideo Okuno
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Shigeto Hamaguchi
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Daiichi Morii
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Hisao Yoshida
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| | - Tomomi Mitsui
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Japan
| |
Collapse
|
18
|
Abstract
Daptomycin, a last-line-of-defense antibiotic for treating Gram-positive infections, is experiencing clinical failure against important infectious agents, including Corynebacterium striatum The recent transition of daptomycin to generic status is projected to dramatically increase availability, use, and clinical failure. Here we confirm the genetic mechanism of high-level daptomycin resistance (HLDR; MIC = >256 µg/ml) in C. striatum, which evolved within a patient during daptomycin therapy, a phenotype recapitulated in vitro In all 8 independent cases tested, loss-of-function mutations in phosphatidylglycerol synthase (pgsA2) were necessary and sufficient for high-level daptomycin resistance. Through lipidomic and biochemical analysis, we demonstrate that daptomycin's activity is dependent on the membrane phosphatidylglycerol (PG) concentration. Until now, the verification of PG as the in vivo target of daptomycin has proven difficult since tested cell model systems were not viable without membrane PG. C. striatum becomes daptomycin resistant at a high level by removing PG from the membrane and changing the membrane composition to maintain viability. This work demonstrates that loss-of-function mutation in pgsA2 and the loss of membrane PG are necessary and sufficient to produce high-level resistance to daptomycin in C. striatumIMPORTANCE Antimicrobial resistance threatens the efficacy of antimicrobial treatment options, including last-line-of-defense drugs. Understanding how this resistance develops can help direct antimicrobial stewardship efforts and is critical to designing the next generation of antimicrobial therapies. Here we determine how Corynebacterium striatum, a skin commensal and opportunistic pathogen, evolved high-level resistance to a drug of last resort, daptomycin. Through a single mutation, this pathogen was able to remove the daptomycin's target, phosphatidylglycerol (PG), from the membrane and evade daptomycin's bactericidal activity. We found that additional compensatory changes were not necessary to support the removal of PG and replacement with phosphatidylinositol (PI). The ease with which C. striatum evolved high-level resistance is cause for alarm and highlights the importance of screening new antimicrobials against a wide range of clinical pathogens which may harbor unique capacities for resistance evolution.
Collapse
|
19
|
Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Corynebacterium spp. clinical isolates and update of their susceptibility. J Glob Antimicrob Resist 2018; 14:246-252. [PMID: 29782954 DOI: 10.1016/j.jgar.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Although Corynebacterium spp. are part of the microbiota of the skin and mucous membranes, human infections caused by Corynebacterium spp. have been reported and the multidrug resistance pattern of the recovered isolates was emphasised. Due to the usefulness of disk diffusion in daily practice, the purpose of this study was to compare disk diffusion with agar dilution to determine disk diffusion breakpoints and to review the antimicrobial susceptibility of the most frequent Corynebacterium spp. isolated in clinical samples. METHODS Susceptibility to 20 antimicrobial agents of 143 Corynebacterium spp. isolates recovered from relevant clinical samples was determined. Comparison between the disk diffusion and agar dilution methods for eight antimicrobial agents was performed to establish new breakpoints using simple linear regression analysis. RESULTS All of the isolates tested were susceptible to vancomycin, minocycline and linezolid. A typical susceptibility profile to β-lactam antibiotics among the different species included was not observed. Almost all isolates showed resistance to macrolides and lincosamides. Using a simple linear regression method, it was possible to establish breakpoints for penicillin, erythromycin, clindamycin, gentamicin and ciprofloxacin. However, the low correlation coefficient obtained for vancomycin, minocycline and trimethoprim/sulfamethoxazole did not allow establishment of breakpoints for the disk diffusion method. CONCLUSION The disk diffusion method could only be used to evaluate susceptibility to penicillin, erythromycin, clindamycin, gentamicin and ciprofloxacin. These data show that the presence of a Corynebacterium spp. isolate in a clinical sample demands the performance of antimicrobial susceptibility testing since the susceptibility profile is not predictable.
Collapse
|
20
|
When Good Bugs Go Bad: Epidemiology and Antimicrobial Resistance Profiles of Corynebacterium striatum, an Emerging Multidrug-Resistant, Opportunistic Pathogen. Antimicrob Agents Chemother 2017; 61:AAC.01111-17. [PMID: 28848008 DOI: 10.1128/aac.01111-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 01/11/2023] Open
Abstract
Infections with Corynebacterium striatum have been described in the literature over the last 2 decades, with the majority being bacteremia, central line infections, and occasionally, endocarditis. In recent years, the frequency of C. striatum infections appears to be increasing; a factor likely contributing to this is the increased ease and accuracy of the identification of Corynebacterium spp., including C. striatum, from clinical cultures. The objective of this study was to retrospectively characterize C. striatum isolates recovered from specimens submitted as part of routine patient care at a 1,250-bed, tertiary-care academic medical center. Multiple strain types were recovered, as demonstrated by repetitive-sequence-based PCR. Most of the strains of C. striatum characterized were resistant to antimicrobials commonly used to treat Gram-positive organisms, such as penicillin, ceftriaxone, meropenem, clindamycin, and tetracycline. The MIC50 for ceftaroline was >32 μg/ml. Although there are no interpretive criteria for susceptibility with telavancin, it appeared to have potent in vitro efficacy against this species, with MIC50 and MIC90 values of 0.064 and 0.125 μg/ml, respectively. Finally, as previously reported in case studies, we demonstrated rapid in vitro development of daptomycin resistance in 100% of the isolates tested (n = 50), indicating that caution should be exhibited when using daptomycin for the treatment of C. striatum infections. C. striatum is an emerging, multidrug-resistant pathogen that can be associated with a variety of infection types.
Collapse
|
21
|
Clinical Significance of Commensal Gram-Positive Rods Routinely Isolated from Patient Samples. J Clin Microbiol 2016; 54:2928-2936. [PMID: 27629905 DOI: 10.1128/jcm.01393-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
Commensal bacteria from the skin and mucosal surfaces are routinely isolated from patient samples and considered contaminants. The majority of these isolates are catalase-positive Gram-positive rods from multiple genera routinely classified as diphtheroids. These organisms can be seen upon Gram staining of clinical specimens or can be isolated as the predominant or pure species in culture, raising a priori suspicion of a possible involvement in infection. With the development and adoption of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), suspicious isolates are now routinely identified to the species level. In this study, we performed a retrospective data review (2012 to 2015) and utilized site-specific laboratory criteria and chart reviews to identify species within the diphtheroid classification representative of true infection versus contamination. Our data set included 762 isolates from 13 genera constituting 41 bacterial species. Only 18% represented true infection, and 82% were deemed contaminants. Clinically significant isolates were identified in anaerobic wounds (18%), aerobic wounds (30%), blood (5.5%), urine (22%), cerebrospinal fluid (24%), ophthalmologic cultures (8%), and sterile sites (20%). Organisms deemed clinically significant included multiple Actinomyces species in wounds, Propionibacterium species in joints and cerebrospinal fluid associated with central nervous system hardware, Corynebacterium kroppenstedtii (100%) in breast, and Corynebacterium striatum in multiple sites. Novel findings include clinically significant urinary tract infections by Actinomyces neuii (21%) and Corynebacterium aurimucosum (21%). Taken together, these findings indicate that species-level identification of diphtheroids isolated with a priori suspicion of infection is essential to accurately determine whether an isolate belongs to a species associated with specific types of infection.
Collapse
|
22
|
Agarwal V, Parikh V, Lakhani M, De C, Motivala A, Mobarakai N. Sub-acute endocarditis by Corynebacterium straitum: An often ignored pathogen. World J Clin Infect Dis 2014; 4:1-4. [DOI: 10.5495/wjcid.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/21/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
With the emergence of novel etiologic organisms, pan-resistance, and invasive medical care infective endocarditis continues to be evasive, requiring newer approaches and modified treatment guidelines. Presented here is the case of a 75-year-old male with history of systolic heart failure with an automatic internal cardioverter defibrillator (AICD) implantation and a prosthetic mitral valve who presented with generalized malaise and progressive shortness of breath for 6 d. He was found to have positive blood cultures for gram positive rod shaped bacteria identified as Corynebacterium straitum, but was not considered as the etiological pathogen initially as it a usual skin contaminant. Later this bacterium was found to be the causative agent for the patient’s endocarditis. This case highlights the importance of identifying the role of this uncommon commensal in invasive disease. With the use of effective antibiotic regimen and awareness of these new pathogens in invasive disease, mortality and morbidity can be prevented with initiation of early appropriate therapy.
Collapse
|
23
|
Corynebacterium striatum Cardiovascular Implantable Electronic Device Infection. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2013. [DOI: 10.1097/ipc.0b013e31827f44ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Verroken A, Bauraing C, Deplano A, Bogaerts P, Huang D, Wauters G, Glupczynski Y. Epidemiological investigation of a nosocomial outbreak of multidrug-resistant Corynebacterium striatum at one Belgian university hospital. Clin Microbiol Infect 2013; 20:44-50. [PMID: 23586637 DOI: 10.1111/1469-0691.12197] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/01/2022]
Abstract
During an 8-month period, 24 Corynebacterium striatum isolates recovered from lower respiratory tract specimens of 10 hospitalized patients were characterized. The organisms were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and by 16S rRNA gene sequencing. The cluster of C. striatum exclusively affected patients who had been admitted to an intensive care unit and/or subsequently transferred to one medium-size respiratory care unit. Prolonged duration of hospitalization, advanced stage of chronic obstructive pulmonary disease, recent administration of antibiotics and exposure to an invasive diagnostic procedure were the most commonly found risk factors in these patients. Seven patients were colonized and three infected. All strains displayed a similar broad spectrum resistance to antimicrobial agents, remaining susceptible to vancomycin only. Typing analysis by MALDI-TOF MS and by semi-automated repetitive sequence-based PCR (DiversiLab typing) showed that all outbreak-associated C. striatum isolates clustered together in one single type while they differed markedly from epidemiologically unrelated C. striatum isolates. Pulsed-field gel electrophoresis (PFGE) profiles revealed three distinct PFGE types among the C. striatum isolates associated with the outbreak while all external strains except one belonged to a distinct type. We conclude that C. striatum is an opportunistic nosocomial pathogen in long-term hospitalized patients and can be at the origin of major outbreaks. The routine use of MALDI-TOF MS greatly facilitated the recognition/identification of this organism in clinical samples and this technique could also offer the potential to be used as an easy and rapid epidemiological typing tool for outbreak investigation.
Collapse
Affiliation(s)
- A Verroken
- Department of Clinical Microbiology, UCL Saint-Luc University Hospital, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Baio PVP, Mota HF, Freitas AD, Gomes DLR, Ramos JN, Sant'Anna LO, Souza MC, Camello TCF, Hirata R, Vieira VV, Mattos-Guaraldi AL. Clonal multidrug-resistant Corynebacterium striatum within a nosocomial environment, Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 2013; 108:23-9. [PMID: 23440110 PMCID: PMC3974316 DOI: 10.1590/s0074-02762013000100004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022] Open
Abstract
Corynebacterium striatum is a potentially pathogenic microorganism with the ability to produce outbreaks of nosocomial infections. Here, we document a nosocomial outbreak caused by multidrug-resistant (MDR) C. striatum in Rio de Janeiro, Brazil. C. striatum identification was confirmed by 16S rRNA and rpoB gene sequencing. Fifteen C. striatum strains were isolated from adults (half of whom were 50 years of age and older). C. striatum was mostly isolated in pure culture from tracheal aspirates of patients undergoing endotracheal intubation procedures. The analysis by pulsed-field gel electrophoresis (PFGE) indicated the presence of four PFGE profiles, including two related clones of MDR strains (PFGE I and II). The data demonstrated the predominance of PFGE type I, comprising 11 MDR isolates that were mostly isolated from intensive care units and surgical wards. A potential causal link between death and MDR C. striatum (PFGE types I and II) infection was observed in five cases.
Collapse
Affiliation(s)
- Paulo Victor Pereira Baio
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
- Departamento de Microbiologia, Instituto Nacional de Controle de Qualidade em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
- Laboratório Químico Farmacêutico do Exército, Ministério da Defesa, Rio de Janeiro, RJ, Brasil
| | - Higor Franceschi Mota
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
| | - Andréa D'avila Freitas
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
- Unidade Docente Assistencial de Doenças Infecciosas e Parasitárias
| | - Débora Leandro Rama Gomes
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
- Faculdade de Farmácia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Juliana Nunes Ramos
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
- Departamento de Microbiologia, Instituto Nacional de Controle de Qualidade em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Lincoln Oliveira Sant'Anna
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
| | - Mônica Cristina Souza
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
| | - Thereza Cristina Ferreira Camello
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
- Laboratório de Bacteriologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Raphael Hirata
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
| | - Verônica Viana Vieira
- Departamento de Microbiologia, Instituto Nacional de Controle de Qualidade em Saúde-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana Luíza Mattos-Guaraldi
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Departamento de Microbiologia, Imunologia e Patologia, Faculdade de Ciências Médicas
| |
Collapse
|
26
|
Microbiological investigation and clinical significance of Corynebacterium spp. in respiratory specimens. Diagn Microbiol Infect Dis 2012; 74:236-41. [PMID: 22938828 DOI: 10.1016/j.diagmicrobio.2012.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/22/2012] [Accepted: 07/10/2012] [Indexed: 12/13/2022]
Abstract
The purpose of this retrospective study was to evaluate the pathogenic role of Corynebacterium species in lower respiratory tract infections as well as their routine laboratory investigation. From April 2007 to August 2009, 27 clinical isolates were significantly recovered from respiratory specimens of 27 different patients clinically suspected of having lower respiratory tract infections. The average age of patients was 65 years, while 22 (81%) patients presented at least 1 predisposing condition. Of the 27 patients, 15 (56%) were classified as infected according to Centers for Disease Control and Prevention/National Healthcare Safety Network criteria, with 93% of infections being hospital acquired. All isolates were accurately identified to the species level using molecular methods (i.e., 17 Corynebacterium pseudodiphtheriticum, 7 Corynebacterium striatum, and 3 Corynebacterium accolens), whereas phenotypic methods remained frequently unreliable for identifying C. striatum and C. accolens strains. All tested isolates were susceptible to amoxicillin, imipenem, vancomycin, linezolid, and tigecycline, whereas most of them were resistant to erythromycin.
Collapse
|
27
|
Chen FL, Hsueh PR, Teng SO, Ou TY, Lee WS. Corynebacterium striatum bacteremia associated with central venous catheter infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2011; 45:255-8. [PMID: 22154992 DOI: 10.1016/j.jmii.2011.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/10/2011] [Accepted: 06/01/2011] [Indexed: 11/30/2022]
Abstract
Corynebacterium striatum (C striatum) has been considered a contaminant of blood culture in past decades. Here we report the case of a patient with acute deterioration of chronic renal failure. She received hemodialysis and died from C striatum bacteremia. By using a randomly amplified polymorphic DNA (RAPD) method, we found that an association existed between C striatum from the bloodstream and that from the central venous catheter. We suggest that C striatum could be a pathogen of bloodstream infection in patients with such a catheter in place.
Collapse
Affiliation(s)
- Fu-Lun Chen
- Division of Infectious Disease, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan
| | | | | | | | | |
Collapse
|