1
|
Ayub A, Cheong YK, Castro JC, Cumberlege O, Chrysanthou A. Use of Hydrogen Peroxide Vapour for Microbiological Disinfection in Hospital Environments: A Review. Bioengineering (Basel) 2024; 11:205. [PMID: 38534479 DOI: 10.3390/bioengineering11030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Disinfection of nosocomial pathogens in hospitals is crucial to combat healthcare-acquired infections, which can be acquired by patients, visitors and healthcare workers. However, the presence of a wide range of pathogens and biofilms, combined with the indiscriminate use of antibiotics, presents infection control teams in healthcare facilities with ongoing challenges in the selection of biocides and application methods. This necessitates the development of biocides and innovative disinfection methods that overcome the shortcomings of conventional methods. This comprehensive review finds the use of hydrogen peroxide vapour to be a superior alternative to conventional methods. Motivated by observations in previous studies, herein, we provide a comprehensive overview on the utilisation of hydrogen peroxide vapour as a superior high-level disinfection alternative in hospital settings. This review finds hydrogen peroxide vapour to be very close to an ideal disinfectant due to its proven efficacy against a wide range of microorganisms, safety to use, lack of toxicity concerns and good material compatibility. The superiority of hydrogen peroxide vapour was recently demonstrated in the case of decontamination of N95/FFP2 masks for reuse to address the critical shortage caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the COVID-19 pandemic. Despite the significant number of studies demonstrating antimicrobial activity, there remains a need to critically understand the mechanism of action by performing studies that simultaneously measure damage to all bacterial cell components and assess the correlation of this damage with a reduction in viable cell count. This can lead to improvement in antimicrobial efficacy and foster the development of superior approaches.
Collapse
Affiliation(s)
- Aaqib Ayub
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Yuen Ki Cheong
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Jesus Calvo Castro
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | | | - Andreas Chrysanthou
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
2
|
Knobling B, Franke G, Carlsen L, Belmar Campos C, Büttner H, Klupp EM, Maurer PM, Knobloch JK. Phenotypic Variation in Clinical S. aureus Isolates Did Not Affect Disinfection Efficacy Using Short-Term UV-C Radiation. Microorganisms 2023; 11:1332. [PMID: 37317306 PMCID: PMC10223295 DOI: 10.3390/microorganisms11051332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Pigmentation, catalase activity and biofilm formation are virulence factors that cause resistance of Staphylococcus aureus to environmental stress factors including disinfectants. In recent years, automatic UV-C room disinfection gained greater importance in enhanced disinfection procedures to improve disinfection success in hospitals. In this study, we evaluated the effect of naturally occurring variations in the expression of virulence factors in clinical S. aureus isolates on tolerance against UV-C radiation. Quantification of staphyloxanthin expression, catalase activity and biofilm formation for nine genetically different clinical S. aureus isolates as well as reference strain S. aureus ATCC 6538 were performed using methanol extraction, a visual approach assay and a biofilm assay, respectively. Log10 reduction values (LRV) were determined after irradiation of artificially contaminated ceramic tiles with 50 and 22 mJ/cm2 UV-C using a commercial UV-C disinfection robot. A wide variety of virulence factor expression was observed, indicating differential regulation of global regulatory networks. However, no direct correlation with the strength of expression with UV-C tolerance was observed for either staphyloxanthin expression, catalase activity or biofilm formation. All isolates were effectively reduced with LRVs of 4.75 to 5.94. UV-C disinfection seems therefore effective against a wide spectrum of S. aureus strains independent of occurring variations in the expression of the investigated virulence factors. Due to only minor differences, the results of frequently used reference strains seem to be representative also for clinical isolates in S. aureus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Johannes K. Knobloch
- Department Infection Prevention and Control, Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (B.K.); (L.C.); (P.M.M.)
| |
Collapse
|
3
|
van der Starre CM, Cremers-Pijpers SAJ, van Rossum C, Bowles EC, Tostmann A. The in situ efficacy of whole room disinfection devices: a literature review with practical recommendations for implementation. Antimicrob Resist Infect Control 2022; 11:149. [PMID: 36471395 PMCID: PMC9724435 DOI: 10.1186/s13756-022-01183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Terminal cleaning and disinfection of hospital patient rooms must be performed after discharge of a patient with a multidrug resistant micro-organism to eliminate pathogens from the environment. Terminal disinfection is often performed manually, which is prone to human errors and therefore poses an increased infection risk for the next patients. Automated whole room disinfection (WRD) replaces or adds on to the manual process of disinfection and can contribute to the quality of terminal disinfection. While the in vitro efficacy of WRD devices has been extensively investigated and reviewed, little is known about the in situ efficacy in a real-life hospital setting. In this review, we summarize available literature on the in situ efficacy of WRD devices in a hospital setting and compare findings to the in vitro efficacy of WRD devices. Moreover, we offer practical recommendations for the implementation of WRD devices. METHODS The in situ efficacy was summarized for four commonly used types of WRD devices: aerosolized hydrogen peroxide, H2O2 vapour, ultraviolet C and pulsed xenon ultraviolet. The in situ efficacy was based on environmental and clinical outcome measures. A systematic literature search was performed in PubMed in September 2021 to identify available literature. For each disinfection system, we summarized the available devices, practical information, in vitro efficacy and in situ efficacy. RESULTS In total, 54 articles were included. Articles reporting environmental outcomes of WRD devices had large variation in methodology, reported outcome measures, preparation of the patient room prior to environmental sampling, the location of sampling within the room and the moment of sampling. For the clinical outcome measures, all included articles reported the infection rate. Overall, these studies consistently showed that automated disinfection using any of the four types of WRD is effective in reducing environmental and clinical outcomes. CONCLUSION Despite the large variation in the included studies, the four automated WRD systems are effective in reducing the amount of pathogens present in a hospital environment, which was also in line with conclusions from in vitro studies. Therefore, the assessment of what WRD device would be most suitable in a specific healthcare setting mostly depends on practical considerations.
Collapse
Affiliation(s)
- Caroline M. van der Starre
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Suzan A. J. Cremers-Pijpers
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Carsten van Rossum
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Edmée C. Bowles
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Alma Tostmann
- grid.10417.330000 0004 0444 9382Unit of Hygiene and Infection Prevention, Department of Medical Microbiology, Radboud Center for Infectious Diseases (RCI), Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Tao C, Sun G, Tang X, Gan Y, Liang G, Wang J, Huang Y. Bactericidal efficacy of low concentration of vaporized hydrogen peroxide with validation in a BSL-3 laboratory. J Hosp Infect 2022; 127:51-58. [PMID: 35594986 DOI: 10.1016/j.jhin.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Highly infective pathogens are cultured and studied in biosafety laboratories. It is critical to thoroughly disinfect these laboratories to prevent laboratory infection. A whole-room, non-contact, reduced corrosion disinfection strategy using hydrogen peroxide was proposed and evaluated. AIM To evaluate the bactericidal efficacy of 8% and 10% vaporized hydrogen peroxide( VHP) in a laboratory setting with spores and bacteria as bioindicators. METHODS Spores of B. atrophaeus and B. stearothermophilus, along with bacteria E. coli, S. aureus, and S. epidermidis were placed in pre-selected locations in a sealed laboratory and an OXY-PHARM NOCOSPRAY2 vaporized hydrogen peroxide generator was applied. Spore killing efficacy was qualitatively evaluated, and bactericidal efficacy was quantitatively analyzed, and the mean log10 reduction was determined. Finally, the optimized disinfection strategy was verified in a BSL-3 laboratory. FINDINGS Significant reductions in microbial load were obtained for each of the selected spores and bacteria when exposed to VHP in concentrations of 8% and 10% for 2~3 h. S. aureus was found to be more resistant than E. coli and S. epidermidis. Tests with 8% hydrogen peroxide and exposure for more than 3 h completely killed B. atrophaeus on surfaces and equipment in the BSL-3 laboratory. CONCLUSION The vaporized hydrogen peroxide generator is superior in terms of good diffusivity and low corrosiveness and is time-effective in removing the disinfectant residue. This study provides reference for the precise disinfection of air and object surfaces in biosafety laboratories under varying conditions.
Collapse
Affiliation(s)
- C Tao
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - G Sun
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - X Tang
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Y Gan
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - G Liang
- School of Public Health, Guangxi Medical University. Nanning, Guangxi, China
| | - J Wang
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Y Huang
- Centre for Disease Prevention and Control, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
5
|
Berger D, Gundermann G, Sinha A, Moroi M, Goyal N, Tsai A. Review of aerosolized hydrogen peroxide, vaporized hydrogen peroxide, and hydrogen peroxide gas plasma in the decontamination of filtering facepiece respirators. Am J Infect Control 2022; 50:203-213. [PMID: 34182069 PMCID: PMC8233052 DOI: 10.1016/j.ajic.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to over 170?million cases worldwide with over 33.2?million cases and 594,000 deaths in the US alone as of May 31st, 2021. The pandemic has also created severe shortages of personal protective equipment, particularly of filtering facepiece respirators (FFRs). The Centers for Disease Control and Prevention (CDC) has issued recommendations to help conserve FFRs, as well as crisis standards, including four criteria required for decontamination of the traditionally single use respirators. This review is designed to provide an overview of the current literature on vaporized hydrogen peroxide (vHP), hydrogen peroxide gas plasma (HPGP), and aerosolized hydrogen peroxide (aHP) with respect to each of the four CDC decontamination criteria. METHODS PubMed and Medrxiv were queried for relevant articles. All articles underwent a title and abstract screen as well as subsequent full text screen by two blinded reviewers if indicated. RESULTS Searches yielded 195 papers, of which, 79 were found to be relevant. Of those, 23 papers presented unique findings and 8 additional articles and technical papers were added to provide a comprehensive review. Overall, while there are potential concerns for all 3 decontamination methods, we found that vHP has the most evidence supporting its use in FFR decontamination consistent with CDC recommendation. CONCLUSIONS Future research is recommended to evaluate biological inactivation and real world fit failures after FFR reuse.
Collapse
Affiliation(s)
| | | | | | - Morgan Moroi
- Penn State College of Medicine, Hershey, PA,Division of Cardiac, Thoracic, and Vascular Surgery, Department of Surgery, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY
| | | | - Anthony Tsai
- Penn State College of Medicine, Hershey, PA,Address correspondence to Anthony Tsai, MD, Mail Code H113, 500 University Drive P.O. Box 850, Hershey, PA 17033
| |
Collapse
|
6
|
Automated room decontamination: report of a Healthcare Infection Society Working Party. J Hosp Infect 2022; 124:97-120. [DOI: 10.1016/j.jhin.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/24/2023]
|
7
|
Kelly S, Schnugh D, Thomas DT. The Effectiveness of Ultraviolet-C (UV-C) versus Aerosolized Hydrogen Peroxide (aHP) in ICU Terminal Disinfection. J Hosp Infect 2021; 121:114-119. [PMID: 34915051 DOI: 10.1016/j.jhin.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND According to the Centers for Disease Control and Prevention, 10% of patients with healthcare-acquired infections (HAIs) died during their hospitalisation in 2015. Thus, the reduction in HAI prevalence is critical. One strategy to achieve this is the adequate disinfection of patient rooms within the hospital. AIM To compare the effectiveness of an Ultraviolet-C room sanitizer against that of an aerosolized hydrogen peroxide device in eliminating selected healthcare-associated (HA) pathogens and other HA-organisms in an ICU setting. METHODS The disinfection systems were tested on the following organisms: meticillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant K. pneumoniae, vancomycin-resistant enterococci, multidrug-resistant Acinetobacter baumannii, and Candida auris. Media plates with known densities of each organism and placed at preselected regions within an ICU room. The mean kill rate was determined for each organism. Additionally, swabs were taken from five high-touch areas from different ICU rooms prior to manual cleaning, following manual cleaning, and following each disinfection method in order to compare their effectiveness. FINDINGS The UV-C device achieved a 96.75% mean microbial reduction in non-shaded areas. It was significantly less effective in the shaded regions. The aHP system achieved a mean kill rate of 50.71% for all areas. The swab results revealed that 15% of manually cleaned surfaces still harboured a microbial load, which was eradicated after use of either no-touch disinfection system. CONCLUSION This study presents the notable differences between two no-touch disinfection methods, highlights their effectiveness and advocates for their incorporation alongside a manual cleaning regimen.
Collapse
Affiliation(s)
- Sean Kelly
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Witwatersrand University, Johannesburg, South Africa.
| | - Desmond Schnugh
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Witwatersrand University, Johannesburg, South Africa; Infection control services laboratory, National Health Laboratory Services, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Dr Teena Thomas
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Witwatersrand University, Johannesburg, South Africa; Infection control services laboratory, National Health Laboratory Services, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
8
|
A Systematic Review on the Efficacy of Vaporized Hydrogen Peroxide as a Non-Contact Decontamination System for Pathogens Associated with the Dental Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094748. [PMID: 33946831 PMCID: PMC8124733 DOI: 10.3390/ijerph18094748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Aerosol generation and a wide range of pathogens originating from the oral cavity of the patient contaminate various surfaces of the dental clinic. The aim was to determine the efficacy of vaporized hydrogen peroxide fogging on pathogens related to the dental environment and its possible application in dentistry. PICOS statement (Population, Intervention, Comparison/Control, Outcome and Study design statement) was used in the review. Six electronic databases were searched for articles published from 2010 to 2020. Articles written in English reporting vaporized hydrogen peroxide on pathogens deemed to be relevant to the dental environment were assessed. The quality of the studies was assessed using the risk-of-bias assessment tool designed for the investigation of vaporized hydrogen peroxide application in dentistry. A total of 17 studies were included in the qualitative synthesis. The most commonly reported single bacterial pathogen was Methicillin-resistant Staphylococcus aureus in five studies, and the viruses Feline calicivirus, Human norovirus, and Murine norovirus were featured in three studies. The results of the studies reporting the log kill were sufficient for all authors to conclude that vaporized hydrogen peroxide generation was effective for the assessed pathogens. The studies that assessed aerosolized hydrogen peroxide found a greater log kill with the use of vaporized hydrogen peroxide generators. The overarching conclusion was that hydrogen peroxide delivered as vaporized hydrogen peroxide was an effective method to achieve large levels of log kill on the assessed pathogens. The hydrogen peroxide vapor generators can play a role in dental bio-decontamination. The parameters must be standardized and the efficacy assessed to perform bio-decontamination for the whole clinic. For vaporized hydrogen peroxide generators to be included in the dental bio-decontamination regimen, certain criteria should be met. These include the standardization and efficacy assessment of the vaporized hydrogen peroxide generators in dental clinics.
Collapse
|
9
|
Wigginton KR, Arts PJ, Clack HL, Fitzsimmons WJ, Gamba M, Harrison KR, LeBar W, Lauring AS, Li L, Roberts WW, Rockey NC, Torreblanca J, Young C, Anderegg LG, Cohn AM, Doyle JM, Meisenhelder CM, Raskin L, Love NG, Kaye KS. Validation of N95 Filtering Facepiece Respirator Decontamination Methods Available at a Large University Hospital. Open Forum Infect Dis 2021; 8:ofaa610. [PMID: 33575418 DOI: 10.1101/2020.04.28.20084038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Due to unprecedented shortages in N95 filtering facepiece respirators, healthcare systems have explored N95 reprocessing. No single, full-scale reprocessing publication has reported an evaluation including multiple viruses, bacteria, and fungi along with respirator filtration and fit. METHODS We explored reprocessing methods using new 3M 1860 N95 respirators, including moist (50%-75% relative humidity [RH]) heat (80-82°C for 30 minutes), ethylene oxide (EtO), pulsed xenon UV-C (UV-PX), hydrogen peroxide gas plasma (HPGP), and hydrogen peroxide vapor (HPV). Respirator samples were analyzed using 4 viruses (MS2, phi6, influenza A virus [IAV], murine hepatitis virus [MHV)]), 3 bacteria (Escherichia coli, Staphylococcus aureus, Geobacillus stearothermophilus spores, and vegetative bacteria), and Aspergillus niger. Different application media were tested. Decontaminated respirators were evaluated for filtration integrity and fit. RESULTS Heat with moderate RH most effectively inactivated virus, resulting in reductions of >6.6-log10 MS2, >6.7-log10 Phi6, >2.7-log10 MHV, and >3.9-log10 IAV and prokaryotes, except for G stearothermohphilus. Hydrogen peroxide vapor was moderately effective at inactivating tested viruses, resulting in 1.5- to >4-log10 observable inactivation. Staphylococcus aureus inactivation by HPV was limited. Filtration efficiency and proper fit were maintained after 5 cycles of heat with moderate RH and HPV. Although it was effective at decontamination, HPGP resulted in decreased filtration efficiency, and EtO treatment raised toxicity concerns. Observed virus inactivation varied depending upon the application media used. CONCLUSIONS Both moist heat and HPV are scalable N95 reprocessing options because they achieve high levels of biological indicator inactivation while maintaining respirator fit and integrity.
Collapse
Affiliation(s)
- Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Herek L Clack
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mirko Gamba
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine R Harrison
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William LeBar
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Lucinda Li
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William W Roberts
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jania Torreblanca
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Carol Young
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Loïc G Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts, USA
| | - Amy M Cohn
- Department of Industrial & Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts, USA
| | | | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Wigginton KR, Arts PJ, Clack HL, Fitzsimmons WJ, Gamba M, Harrison KR, LeBar W, Lauring AS, Li L, Roberts WW, Rockey NC, Torreblanca J, Young C, Anderegg LG, Cohn AM, Doyle JM, Meisenhelder CM, Raskin L, Love NG, Kaye KS. Validation of N95 Filtering Facepiece Respirator Decontamination Methods Available at a Large University Hospital. Open Forum Infect Dis 2021; 8:ofaa610. [PMID: 33575418 PMCID: PMC7863868 DOI: 10.1093/ofid/ofaa610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Due to unprecedented shortages in N95 filtering facepiece respirators, healthcare systems have explored N95 reprocessing. No single, full-scale reprocessing publication has reported an evaluation including multiple viruses, bacteria, and fungi along with respirator filtration and fit. METHODS We explored reprocessing methods using new 3M 1860 N95 respirators, including moist (50%-75% relative humidity [RH]) heat (80-82°C for 30 minutes), ethylene oxide (EtO), pulsed xenon UV-C (UV-PX), hydrogen peroxide gas plasma (HPGP), and hydrogen peroxide vapor (HPV). Respirator samples were analyzed using 4 viruses (MS2, phi6, influenza A virus [IAV], murine hepatitis virus [MHV)]), 3 bacteria (Escherichia coli, Staphylococcus aureus, Geobacillus stearothermophilus spores, and vegetative bacteria), and Aspergillus niger. Different application media were tested. Decontaminated respirators were evaluated for filtration integrity and fit. RESULTS Heat with moderate RH most effectively inactivated virus, resulting in reductions of >6.6-log10 MS2, >6.7-log10 Phi6, >2.7-log10 MHV, and >3.9-log10 IAV and prokaryotes, except for G stearothermohphilus. Hydrogen peroxide vapor was moderately effective at inactivating tested viruses, resulting in 1.5- to >4-log10 observable inactivation. Staphylococcus aureus inactivation by HPV was limited. Filtration efficiency and proper fit were maintained after 5 cycles of heat with moderate RH and HPV. Although it was effective at decontamination, HPGP resulted in decreased filtration efficiency, and EtO treatment raised toxicity concerns. Observed virus inactivation varied depending upon the application media used. CONCLUSIONS Both moist heat and HPV are scalable N95 reprocessing options because they achieve high levels of biological indicator inactivation while maintaining respirator fit and integrity.
Collapse
Affiliation(s)
- Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Herek L Clack
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mirko Gamba
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine R Harrison
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William LeBar
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Lucinda Li
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William W Roberts
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jania Torreblanca
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Carol Young
- Department of Pathology, Clinical Microbiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Loïc G Anderegg
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts, USA
| | - Amy M Cohn
- Department of Industrial & Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts, USA
| | | | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol 2021; 87:AEM.02019-20. [PMID: 33158901 PMCID: PMC7848922 DOI: 10.1128/aem.02019-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. Airborne disinfection of high-containment facilities before maintenance or between animal studies is crucial. Commercial spore carriers (CSC) coated with 106 spores of Geobacillus stearothermophilus are often used to assess the efficacy of disinfection. We used quantitative carrier testing (QCT) procedures to compare the sensitivity of CSC with that of surrogates for nonenveloped and enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mycobacteria, and spores, to an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP). We then used the QCT methodology to determine relevant process parameters to develop and validate effective disinfection protocols (≥4-log10 reduction) in various large and complex facilities. Our results demonstrate that aPAA-HP is a highly efficient procedure for airborne room disinfection. Relevant process parameters such as temperature and relative humidity can be wirelessly monitored. Furthermore, we found striking differences in inactivation efficacies against some of the tested microorganisms. Overall, we conclude that dry fogging a mixture of aPAA-HP is highly effective against a broad range of microorganisms as well as material compatible with relevant concentrations. Furthermore, CSC are artificial bioindicators with lower resistance and thus should not be used for validating airborne disinfection when microorganisms other than viruses have to be inactivated. IMPORTANCE Airborne disinfection is not only of crucial importance for the safe operation of laboratories and animal rooms where infectious agents are handled but also can be used in public health emergencies such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. We show that dry fogging an aerosolized mixture of peroxyacetic acid and hydrogen peroxide (aPAA-HP) is highly microbicidal, efficient, fast, robust, environmentally neutral, and a suitable airborne disinfection method. In addition, the low concentration of dispersed disinfectant, particularly for enveloped viral pathogens such as SARS-CoV-2, entails high material compatibility. For these reasons and due to the relative simplicity of the procedure, it is an ideal disinfection method for hospital wards, ambulances, public conveyances, and indoor community areas. Thus, we conclude that this method is an excellent choice for control of the current SARS-CoV-2 pandemic.
Collapse
|
12
|
Kümin D, Albert MG, Weber B, Summermatter K. The Hitchhiker's Guide to Hydrogen Peroxide Fumigation, Part 1: Introduction to Hydrogen Peroxide Fumigation. APPLIED BIOSAFETY 2020; 25:214-224. [PMID: 36032396 PMCID: PMC9134629 DOI: 10.1177/1535676020921007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Introduction When working with pathogens in laboratories, animal or production facilities, and even hospitals, the potential need for room fumigation for decontamination purposes must be taken into consideration. Questions regarding the choice of fumigant, technical aspects of the room, its ventilation, the fumigation system to be used, and other issues will arise and will have to be addressed. Methods This article is based on literature searches and was compiled using the authors' long-time personal experience in room and filter fumigation using various fumigation systems. Results The article can be used as a guide to establish an effective fumigation system in a laboratory or an animal facility setting and may be adapted for use in hospitals. Different systems for hydrogen peroxide fumigation on the market are presented. Also, technical aspects are discussed. Discussion Hydrogen peroxide is used in various forms for fumigation of rooms, equipment, and filters. Regardless of the individual limitations of these forms, hydrogen peroxide is a versatile fumigation method. However, it is important to consider numerous technical requirements when planning to implement hydrogen peroxide fumigation at an institution. Conclusions Subsequent to the present overview of different fumigation systems based on hydrogen peroxide on the market and their technical requirements, part 2 of this article will focus on validation and verification of hydrogen peroxide fumigation while considering the entire fumigation process. The two parts together will serve users as a guide to establishing hydrogen peroxide fumigations at their facilities.
Collapse
|
13
|
Kimura T, Yahata H, Uchiyama Y. Examination of Material Compatibilities with Ionized and Vaporized Hydrogen Peroxide Decontamination. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:703-711. [PMID: 32943134 PMCID: PMC7604689 DOI: 10.30802/aalas-jaalas-19-000165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydrogen peroxide (HP) decontamination is effective for a wide spectrum of pathogenic microorganisms. However, exposure to HP causes deleterious effects on some materials. The purpose of this study was to examine material compatibilities with ionized and vaporized hydrogen peroxide (iHP and VHP). With regard to iHP, 24 kinds of materials were exposed up to 100 cycles to iHP. The tested materials included plastics, metals, woods and plated or coated goods. The procedure of iHP decontamination was as following: gas time (11 min), dwell time (15 min) and aeration time (120 min). iHP decontamination caused some damage to copper, brass, chromium plate and galvanized iron immediately after exposure. Repeated iHP decontamination caused marked damage in stainless steel and urethane-, silicone- or epoxy-coating materials. Condensation of iHP decontamination posed severe damage for the material surfaces. With regard to VHP, 36 kinds of materials were exposed for up to 200 cycles to VHP decontamination. Under dry (dehumidified) conditions, VHP decontamination caused few changes on the surfaces of resin materials in dry conditions, although some resins began to develop hardening or softening. Discoloration was found in the stainless steel and changes in its coating materials. Bleaching was also observed in wooden materials. Under condensation conditions of VHP, nylon softened and butyl rubber hardened. Condensation of VHP caused material damage such as discoloration in the stainless steel, corrosion of zinc-plated steel, and air-bubbling under the color-steel sheet. The high concentrations of HP with condensation caused severe changes in metals and resins after repeated exposure. The VHP decontamination tests provided evidence that the material damage was more severe under condensation conditions than under dry conditions. Our results demonstrate the importance of condensation of HP when using it to decontaminate equipment.
Collapse
Affiliation(s)
- Tohru Kimura
- Laboratory Animal Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Japan;,
| | - Hiroyuki Yahata
- Sales Division, Support Group, Santasalo & Steri-pro Solution Corporation, 5F, Sannomiya Century Building, 83, Kyomachi, Chuo-ku, Kobe, Japan
| | - Yoshimichi Uchiyama
- Sales Division, Support Group, Nagoya Branch, Santasalo & Steri-pro Solution Corporation, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Grimaldo MA, Bouyer DH, de Siqueira CLM. Determining the Effectiveness of Decontamination with Ionized Hydrogen Peroxide. APPLIED BIOSAFETY 2020; 25:134-141. [PMID: 36035760 PMCID: PMC9134624 DOI: 10.1177/1535676020935405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Introduction Ionized Hydrogen Peroxide (iHP) is a new technology used for the decontamination of surfaces or laboratory areas. It utilizes a low concentration of hydrogen peroxide (H2O2) mixed with air and ionized through a cold plasma arc. This technology generates reactive oxygen species (ROS) as a means of decontamination. Objectives The purpose of this study is to evaluate the diffusion effect of iHP and its decontamination capabilities using biological and enzyme indicators. Methods A gas-tight fumigation room with a volume of 880 ft3 was used for the decontamination trials. During the decontamination process, empty animal cages were placed inside to create fumigant distribution restrictions. Spore and enzyme indicators were placed in eleven locations throughout the decontamination room. Generation of iHP was done with the use of TOMI's SteraMist Environmental System and the SteraMist Solution, with 7.8% H2O2 at a dose of 0.5 ml per ft3. Results For the decontamination of 1hr, 2hrs, 6hrs, and 12hrs, the biological indicators of B. atrophaeus in Stainless Steel (SS) Disk in Tyvek envelope have an inactivation rate of 94%, 97%, 100%, and 100%, respectively. For G. stearothermophilus in SS disk and Tyvek envelope, it has 82%, 68%, 100%, and 100%, respectively and, for G. stearothermophilus in SS strips it has an effective rate of 88%, 67%, 91%, and 100%, respectively. Conclusion iHP inactivates spores, and the residual tAK activity indicates a gas-like fumigant diffusion due to the uniformity of the inactivation without the use of oscillating fans as the contact time is extended.
Collapse
Affiliation(s)
- Miguel A. Grimaldo
- Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
15
|
Otter J, Yezli S, Barbut F, Perl T. An overview of automated room disinfection systems: When to use them and how to choose them. DECONTAMINATION IN HOSPITALS AND HEALTHCARE 2020. [PMCID: PMC7153347 DOI: 10.1016/b978-0-08-102565-9.00015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution, and contact time of the agent. Automated room disinfection (ARD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapor (H2O2 vapor), aerosolized hydrogen peroxide (aHP), and ultraviolet (UV) light. These systems have important differences in their active agent, delivery mechanism, efficacy, process time, and ease of use. The choice of ARD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation, and cost considerations.
Collapse
Affiliation(s)
- J.A. Otter
- NIHR Health Protection Research Unit (HPRU) in HCAIs and AMR at Imperial College London, and Imperial College Healthcare NHS Trust, Infection Prevention and Control, London, United Kingdom
| | - S. Yezli
- Global Centre for Mass Gatherings Medicine, WHO Collaborating Centre for Mass Gatherings Medicine, Ministry of Health-Public Health Directorate, Riyadh, Kingdom of Saudi Arabia
| | - F. Barbut
- National Reference Laboratory for C. difficile, Infection Control Unit, Hôpital Saint Antoine, Paris, France,INSERM S-1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - T.M. Perl
- Infectious Diseases and Geographic Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Pottage T, Lewis S, Lansley A, Fraser S, Hendon-Dunn C, Bacon J, Ngabo D, Parks SR, Bennett AM. Hazard Group 3 agent decontamination using hydrogen peroxide vapour in a class III microbiological safety cabinet. J Appl Microbiol 2019; 128:116-123. [PMID: 31559683 DOI: 10.1111/jam.14461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
Abstract
AIMS This study investigated the efficacy of hydrogen peroxide vapour (HPV) at inactivating hazard group 3 bacteria that have been presented dried from their growth medium to present a realistic challenge. METHODS AND RESULTS Hydrogen peroxide vapour technology (Bioquell) was used to decontaminate a class III microbiological safety cabinet containing biological indicators (BIs) made by drying standard working suspensions of the following agents: Bacillus anthracis (Ames) spores, Brucella abortus (strain S99), Burkholderia pseudomallei (NCTC 12939), Escherichia coli O157 ST11 (NCTC 12079), Mycobacterium tuberculosis (strain H37Rv) and Yersinia pestis (strain CO92) on stainless steel coupons. Extended cycles were used to expose the agents for 90 min. The HPV cycle completely inactivated B. anthracis spores, B. abortus, B. pseudomallei, E. coli O157 and Y. pestis when BIs were processed using quantitative and qualitative methods. Whilst M. tuberculosis was not completely inactivated, it was reduced by 4 log10 from a starting concentration of 106 colony-forming units. CONCLUSIONS This study demonstrates that HPV is able to inactivate a range of HG3 agents at high concentrations with associated organic matter, but M. tuberculosis showed increased resistance to the process. SIGNIFICANCE AND IMPACT OF THE STUDY This publication demonstrates that HPV can inactivate HG3 agents that have an organic load associated with them. It also shows that M. tuberculosis has higher resistance to HPV than other agents. This shows that an appropriate BI to represent the agent of interest should be chosen to demonstrate a decontamination is successful.
Collapse
Affiliation(s)
- T Pottage
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| | - S Lewis
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - A Lansley
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - S Fraser
- Novel and Dangerous Pathogens Training, National Infection Service, Public Health England, Salisbury, UK
| | - C Hendon-Dunn
- TB Research Group, National Infection Service, Public Health England, Salisbury, UK
| | - J Bacon
- TB Research Group, National Infection Service, Public Health England, Salisbury, UK
| | - D Ngabo
- Medical Interventions Group, National Infection Service, Public Health England, Salisbury, UK
| | - S R Parks
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| | - A M Bennett
- Biosafety, Air and Water Microbiology Group, National Infection Service, Public Health England, Salisbury, UK
| |
Collapse
|
17
|
Standard test method for automated airborne disinfection systems. J Hosp Infect 2018; 100:e67. [DOI: 10.1016/j.jhin.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022]
|
18
|
Park CE, Jeong NY, Yang MJ, Kim HW, Joo SI, Kim KH, Seong HK, Hwang YY, Lim HM, Son JC, Yoon SH, Yoon NS, Jang IH. Study on the Standardization of a Surveillance Culture Laboratory in Infection Control Fields. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chang-Eun Park
- Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Korea
| | - Na-Yeon Jeong
- Infection Control Office, Samsung Medical Center, Seoul, Korea
| | - Min-Ji Yang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Han-Wool Kim
- Infection Control Office, Pusan National University Hospital, Busan, Korea
| | - Sei-Ick Joo
- Department of Biomedical Laboratory Science, Daejeon University, Daejeon, Korea
| | - Keon-Han Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Seoul, Korea
| | - Hee-Kyung Seong
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Korea
| | - Yu-Yean Hwang
- Department of Laboratory Medicine, Samsung Medical Center, Seoul, Korea
| | - Hyun-Mi Lim
- Department of Laboratory Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | - Jae-Cheol Son
- Department of Pulmonology, Chungbuk National University Hospital, Cheongju, Korea
| | | | - Nam-Seob Yoon
- Department of Laboratory Medicine, Asan Medical Center, Seoul, Korea
| | - In-Ho Jang
- Department of Biomedical Laboratory Science, SangJi University, Wonju, Korea
| |
Collapse
|
19
|
Le Toquin E, Faure S, Orange N, Gas F. New Biocide Foam Containing Hydrogen Peroxide for the Decontamination of Vertical Surface Contaminated With Bacillus thuringiensis Spores. Front Microbiol 2018; 9:2295. [PMID: 30319592 PMCID: PMC6171482 DOI: 10.3389/fmicb.2018.02295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
Despite scientific advances, bacterial spores remain a major preoccupation in many different fields, such as the hospital, food, and CBRN-E Defense sector. Although many disinfectant technologies exist, there is a lack for the decontamination of difficult to access areas, outdoor sites, or large interior volumes. This study evaluates the decontamination efficiency of an aqueous foam containing hydrogen peroxide, with the efficiency of disinfectant in the liquid form on vertical surfaces contaminated by Bacillus thurengiensis spores. The decontamination efficiency impact of the surfactant and stabilizer agents in the foam and liquid forms was evaluated. No interferences were observed with these two chemical additives. Our results indicate that the decontamination kinetics of both foam and liquid forms are similar. In addition, while the foam form was as efficient as the liquid solution at 4°C, it was even more so at 30°C. The foam decontamination reaction follows the Arrhenius law, which enables the decontamination kinetic to be predicted with the temperature. Moreover, the foam process used via spraying or filling is more attractive due to the generation of lower quantity of liquid effluents. Our findings highlight the greater suitability of foam to decontaminate difficult to access and high volume facilities compared to liquid solutions.
Collapse
Affiliation(s)
- Esther Le Toquin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France.,Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Sylvain Faure
- Laboratoire des Procédés Supercritiques et Décontamination, Service d'études des technologies pour l'assainissement démantèlement et l'étanchéité, Univ. Montpellier, DEN, CEA, Bagnols-sur-Cèze, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Fabienne Gas
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France
| |
Collapse
|
20
|
Ali S, Yui S, Muzslay M, Wilson APR. Test parameters for efficacy evaluations of aerial hydrogen peroxide decontamination systems. J Hosp Infect 2017; 98:438-439. [PMID: 28923374 DOI: 10.1016/j.jhin.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022]
Affiliation(s)
- S Ali
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK.
| | - S Yui
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | - M Muzslay
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | - A P R Wilson
- Clinical Microbiology and Virology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Affiliation(s)
- Didier Ngabo
- Public Health England, Porton, Salisbury, Wiltshire, UK
| | | | - Allan Bennett
- Public Health England, Porton, Salisbury, Wiltshire, UK
| | - Simon Parks
- Public Health England, Porton, Salisbury, Wiltshire, UK
| |
Collapse
|
22
|
Malik DJ, Shaw CM, Shama G, Clokie MRJ, Rielly CD. An Investigation into the Inactivation Kinetics of Hydrogen Peroxide Vapor Against Clostridium difficile Endospores. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1223058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D. J. Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicester, LE11 3TU, UK
| | - C. M. Shaw
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicester, LE11 3TU, UK
| | - G. Shama
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicester, LE11 3TU, UK
| | - M. R. J. Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - C. D. Rielly
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicester, LE11 3TU, UK
| |
Collapse
|
23
|
|
24
|
Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson A. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect 2016; 93:70-7. [DOI: 10.1016/j.jhin.2016.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
|
25
|
Colbert EM, Gibbs SG, Schmid KK, High R, Lowe JJ, Chaika O, Smith PW. Evaluation of adenosine triphosphate (ATP) bioluminescence assay to confirm surface disinfection of biological indicators with vaporised hydrogen peroxide (VHP). ACTA ACUST UNITED AC 2015. [DOI: 10.1071/hi14022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Blazejewski C, Wallet F, Rouzé A, Le Guern R, Ponthieux S, Salleron J, Nseir S. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:30. [PMID: 25641219 PMCID: PMC4335785 DOI: 10.1186/s13054-015-0752-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The primary objective of this study was to determine the efficiency of hydrogen peroxide (H₂O₂) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell) and an aerosolizer using H₂O₂, and peracetic acid (aHPP, Anios) in MDRO environmental disinfection, and assessment of toxicity of these techniques. METHODS This prospective cross-over study was conducted in five medical and surgical ICUs located in one University hospital, during a 12-week period. Routine terminal cleaning was followed by H₂O₂ disinfection. A total of 24 environmental bacteriological samplings were collected per room, from eight frequently touched surfaces, at three time-points: after patient discharge (T0), after terminal cleaning (T1) and after H₂O₂ disinfection (T2). RESULTS In total 182 rooms were studied, including 89 (49%) disinfected with aHPP and 93 (51%) with HPV. At T0, 15/182 (8%) rooms were contaminated with at least 1 MDRO (extended spectrum β-lactamase-producing Gram-negative bacilli 50%, imipenem resistant Acinetobacter baumannii 29%, methicillin-resistant Staphylococcus aureus 17%, and Pseudomonas aeruginosa resistant to ceftazidime or imipenem 4%). Routine terminal cleaning reduced environmental bacterial load (P <0.001) without efficiency on MDRO (15/182 (8%) rooms at T0 versus 11/182 (6%) at T1; P = 0.371). H₂O₂ technologies were efficient for environmental MDRO decontamination (6% of rooms contaminated with MDRO at T1 versus 0.5% at T2, P = 0.004). Patient characteristics were similar in aHPP and HPV groups. No significant difference was found between aHPP and HPV regarding the rate of rooms contaminated with MDRO at T2 (P = 0.313). 42% of room occupants were MDRO carriers. The highest rate of rooms contaminated with MDRO was found in rooms where patients stayed for a longer period of time, and where a patient with MDRO was hospitalized. The residual concentration of H₂O₂ appears to be higher using aHPP, compared with HPV. CONCLUSIONS H₂O₂ treatment is efficient in reducing MDRO contaminated rooms in the ICU. No significant difference was found between aHPP and HPV regarding their disinfection efficiency.
Collapse
Affiliation(s)
- Caroline Blazejewski
- Critical Care Center, University Hospital of Lille, Rue E. Laine, 59037, Lille Cedex, France.
| | - Frédéric Wallet
- Microbiology Department, University Hospital of Lille, boulevard du Pr. Leclercq, 59000, Lille Cedex, France.
| | - Anahita Rouzé
- Critical Care Center, University Hospital of Lille, Rue E. Laine, 59037, Lille Cedex, France.
| | - Rémi Le Guern
- Microbiology Department, University Hospital of Lille, boulevard du Pr. Leclercq, 59000, Lille Cedex, France.
| | - Sylvie Ponthieux
- Critical Care Center, University Hospital of Lille, Rue E. Laine, 59037, Lille Cedex, France.
| | - Julia Salleron
- Statistics Department, University Hospital of Lille, 1 place de Verdun, 59037, Lille Cedex, France.
| | - Saad Nseir
- Critical Care Center, University Hospital of Lille, Rue E. Laine, 59037, Lille Cedex, France. .,Medicine School, Univeristy of Lille, 1 place de Verdun, 59037, Lille Cedex, France.
| |
Collapse
|
27
|
Decontamination of the Hospital Environment: New Technologies for Infection Control. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Lemmen S, Scheithauer S, Häfner H, Yezli S, Mohr M, Otter JA. Evaluation of hydrogen peroxide vapor for the inactivation of nosocomial pathogens on porous and nonporous surfaces. Am J Infect Control 2015; 43:82-5. [PMID: 25564129 DOI: 10.1016/j.ajic.2014.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clostridium difficile spores and multidrug-resistant (MDR) organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and MDR Acinetobacter baumannii, are important nosocomial pathogens that are difficult to eliminate from the hospital environment. We evaluated the efficacy of hydrogen peroxide vapor (HPV), a no-touch automated room decontamination system, for the inactivation of a range of pathogens dried onto hard nonporous and porous surfaces in an operating room (OR). METHODS Stainless steel and cotton carriers containing >4 log10 viable MRSA, VRE, or MDR A baumannii were placed at 4 locations in the OR along with 7 pouched 6 log10Geobacillus stearothermophilus spore biologic indicators (BIs). HPV was then used to decontaminate the OR. The experiment was repeated 3 times. RESULTS HPV inactivated all spore BIs (>6 log10 reduction), and no MRSA, VRE, or MDR A baumannii were recovered from the stainless steel and cotton carriers (>4-5 log10 reduction, depending on the starting inoculum). HPV was equally effective at all carrier locations. We did not identify any difference in efficacy for microbes dried onto stainless steel or cotton surfaces, indicating that HPV may have a role in the decontamination of both porous and nonporous surfaces. CONCLUSION HPV is an effective way to decontaminate clinical areas where contamination with bacterial spores and MDR organisms is suspected.
Collapse
Affiliation(s)
- Sebastian Lemmen
- Department of Infection Control and Infectious Diseases, University Hospital Aachen, Aachen, Germany.
| | - Simone Scheithauer
- Department of Infection Control and Infectious Diseases, University Hospital Aachen, Aachen, Germany
| | - Helga Häfner
- Department of Infection Control and Infectious Diseases, University Hospital Aachen, Aachen, Germany
| | | | | | - Jonathan A Otter
- Bioquell UK Ltd, Andover, Hampshire, UK; Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St. Thomas' National Health Service (NHS) Foundation Trust, London, UK
| |
Collapse
|
29
|
Dancer SJ. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev 2014; 27:665-90. [PMID: 25278571 PMCID: PMC4187643 DOI: 10.1128/cmr.00020-14] [Citation(s) in RCA: 405] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is increasing interest in the role of cleaning for managing hospital-acquired infections (HAI). Pathogens such as vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), multiresistant Gram-negative bacilli, norovirus, and Clostridium difficile persist in the health care environment for days. Both detergent- and disinfectant-based cleaning can help control these pathogens, although difficulties with measuring cleanliness have compromised the quality of published evidence. Traditional cleaning methods are notoriously inefficient for decontamination, and new approaches have been proposed, including disinfectants, steam, automated dispersal systems, and antimicrobial surfaces. These methods are difficult to evaluate for cost-effectiveness because environmental data are not usually modeled against patient outcome. Recent studies have reported the value of physically removing soil using detergent, compared with more expensive (and toxic) disinfectants. Simple cleaning methods should be evaluated against nonmanual disinfection using standardized sampling and surveillance. Given worldwide concern over escalating antimicrobial resistance, it is clear that more studies on health care decontamination are required. Cleaning schedules should be adapted to reflect clinical risk, location, type of site, and hand touch frequency and should be evaluated for cost versus benefit for both routine and outbreak situations. Forthcoming evidence on the role of antimicrobial surfaces could supplement infection prevention strategies for health care environments, including those targeting multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, Hairmyres Hospital, East Kilbride, Lanarkshire, Scotland, United Kingdom
| |
Collapse
|
30
|
Kaspari O, Lemmer K, Becker S, Lochau P, Howaldt S, Nattermann H, Grunow R. Decontamination of a BSL3 laboratory by hydrogen peroxide fumigation using three different surrogates for Bacillus anthracis spores. J Appl Microbiol 2014; 117:1095-103. [PMID: 25040253 DOI: 10.1111/jam.12601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
AIMS Two independent trials investigated the decontamination of a BSL3 laboratory using vaporous hydrogen peroxide and compared the effect on spores of Bacillus cereus, Bacillus subtilis and Bacillus thuringiensis as surrogates for Bacillus anthracis spores, while spores of Geobacillus stearothermophilus served as control. METHODS AND RESULTS Carriers containing 1·0 × 10(6) spores were placed at various locations within the laboratory before fumigation with hydrogen peroxide following a previously validated protocol. Afterwards, carriers were monitored by plating out samples on agar and observing enrichment in nutrient medium for up to 14 days. Three months later, the experiment was repeated and results were compared. On 98 of 102 carriers, no viable spores could be detected after decontamination, while the remaining four carriers exhibited growth of CFU only after enrichment for several days. Reduction factors between 4·0 and 6·0 log levels could be reached. CONCLUSIONS A validated decontamination of a laboratory with hydrogen peroxide represents an effective alternative to fumigation with formaldehyde. Spores of B. cereus seem to be more resistant than those of G. stearothermophilus. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study provide important results in the field of hydrogen peroxide decontamination when analysing the effect on spores other than those of G. stearothermophilus.
Collapse
Affiliation(s)
- O Kaspari
- Division Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Conventional disinfection methods are limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. ‘No-touch’ automated room disinfection (NTD) systems remove or reduce reliance on operators and so they have the potential to improve the efficacy of terminal disinfection. The most commonly used systems are hydrogen peroxide vapour (H2O2 vapour), aerosolised hydrogen peroxide (aHP) and ultraviolet (UV) radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints.
Collapse
|
32
|
Carling P. Methods for assessing the adequacy of practice and improving room disinfection. Am J Infect Control 2013; 41:S20-5. [PMID: 23622743 DOI: 10.1016/j.ajic.2013.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/08/2013] [Accepted: 01/13/2013] [Indexed: 11/28/2022]
Abstract
The value of objectively monitoring and improving environmental cleaning in health care settings is becoming increasingly recognized as an important component of interventions to mitigate the transmission of health care-associated pathogens. Whereas the 2010 Centers for Disease Control and Prevention tool kit "Options for Evaluating Environmental Cleaning" provides detailed guidance related to implementing such programs, there is a need to clearly understand the value and limitations of various environmental cleaning monitoring approaches to ensure the favorable impact of such activities.
Collapse
Affiliation(s)
- Philip Carling
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
33
|
Malik D. Effect on biocidal efficacy of hydrogen peroxide vapour by catalase activity of nosocomial bacteria. J Hosp Infect 2013; 83:353-4. [DOI: 10.1016/j.jhin.2012.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
34
|
Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of 'no-touch' automated room disinfection systems in infection prevention and control. J Hosp Infect 2012. [PMID: 23195691 DOI: 10.1016/j.jhin.2012.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surface contamination in hospitals is involved in the transmission of pathogens in a proportion of healthcare-associated infections. Admission to a room previously occupied by a patient colonized or infected with certain nosocomial pathogens increases the risk of acquisition by subsequent occupants; thus, there is a need to improve terminal disinfection of these patient rooms. Conventional disinfection methods may be limited by reliance on the operator to ensure appropriate selection, formulation, distribution and contact time of the agent. These problems can be reduced by the use of 'no-touch' automated room disinfection (NTD) systems. AIM To summarize published data related to NTD systems. METHODS Pubmed searches for relevant articles. FINDINGS A number of NTD systems have emerged, which remove or reduce reliance on the operator to ensure distribution, contact time and process repeatability, and aim to improve the level of disinfection and thus mitigate the increased risk from the prior room occupant. Available NTD systems include hydrogen peroxide (H(2)O(2)) vapour systems, aerosolized hydrogen peroxide (aHP) and ultraviolet radiation. These systems have important differences in their active agent, delivery mechanism, efficacy, process time and ease of use. Typically, there is a trade-off between time and effectiveness among NTD systems. The choice of NTD system should be influenced by the intended application, the evidence base for effectiveness, practicalities of implementation and cost constraints. CONCLUSION NTD systems are gaining acceptance as a useful tool for infection prevention and control.
Collapse
Affiliation(s)
- J A Otter
- Centre for Clinical Infection and Diagnostics Research, CIDR, Department of Infectious Diseases, King's College London, School of Medicine and Guy's and St Thomas' NHS Foundation Trust, UK.
| | | | | | | | | |
Collapse
|
35
|
Otter J, Yezli S, French G. Impact of the suspending medium on susceptibility of meticillin-resistant Staphylococcus aureus to hydrogen peroxide vapour decontamination. J Hosp Infect 2012; 82:213-5. [DOI: 10.1016/j.jhin.2012.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 08/16/2012] [Indexed: 02/03/2023]
|
36
|
Otter J, Yezli S. Are commercially available Geobacillus stearothermophilus biological indicators an appropriate standard for hydrogen peroxide vapour systems in hospitals? J Hosp Infect 2012; 80:272-3. [DOI: 10.1016/j.jhin.2011.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022]
|