1
|
Pitol AK, Venkatesan S, Hoptroff M, Hughes GL. Persistence of SARS-CoV-2 and its surrogate, bacteriophage Phi6, on surfaces and in water. Appl Environ Microbiol 2023; 89:e0121923. [PMID: 37902315 PMCID: PMC10686083 DOI: 10.1128/aem.01219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The COVID-19 pandemic spurred research on the persistence of SARS-CoV-2 and its surrogates. Here we highlight the importance of evaluating viral surrogates and experimental methodologies when studying pathogen survival in the environment.
Collapse
Affiliation(s)
- Ana K. Pitol
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samiksha Venkatesan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Hoptroff
- Unilever Research and Development, Port Sunlight, United Kingdom
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
2
|
String GM, Kamal Y, Gute DM, Lantagne DS. Chlorine efficacy against bacteriophage Phi6, a surrogate for enveloped human viruses, on porous and non-porous surfaces at varying temperatures and humidity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:685-693. [PMID: 35912697 DOI: 10.1080/10934529.2022.2101845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
While efficacy of chlorine against Phi6, a widely-used surrogate for pathogenic enveloped viruses, is well-documented, surfaces common to low-resource contexts are under-researched. We evaluated seven surfaces (stainless steel, plastic, nitrile, tarp, cloth, concrete, wood) and three environmental conditions-temperature (4, 25, 40 °C), relative humidity (RH) (23, 85%), and soiling-to determine Phi6 recoverability and the efficacy of disinfection with 0.5% NaOCl. Overall, Phi6 recovery was >4 log10 PFU/mL on most surfaces after drying 1 hour at all temperature/humidity conditions. After disinfection, all non-porous test conditions (48/48) achieved ≥4 LRV at 1 and 5 minutes of exposure; significantly more non-porous surfaces met ≥4 LRV than porous (p < 0.001). Comparing porous surfaces, significantly fewer wood samples met ≥4 LRV than cloth (p < 0.001); no differences were observed between concrete and either wood (p = 0.083) or cloth (p = 0.087). Lastly, no differences were observed between soil and no-soil conditions for all surfaces (p = 0.712). This study highlights infectious Phi6 is recoverable across a range of surfaces and environmental conditions, and confirms the efficacy of chlorine disinfection. We recommend treating all surfaces with suspect contamination as potentially infectious, and disinfecting with 0.5% NaOCl for the minimum contact time required for the target enveloped virus (e.g. Ebola, SARS-CoV-2).
Collapse
Affiliation(s)
- Gabrielle M String
- Lancon Environmental LLC, Cambridge, Massachusetts, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yarmina Kamal
- Lancon Environmental LLC, Cambridge, Massachusetts, USA
| | - David M Gute
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
3
|
Cicconetti F, Sestili P, Madiai V, Albertini MC, Campanella L, Coppari S, Fraternale D, Saunders B, Teodori L. Extracellular pH, osmolarity, temperature and humidity could discourage SARS-CoV-2 cell docking and propagation via intercellular signaling pathways. PeerJ 2021; 9:e12227. [PMID: 34721966 PMCID: PMC8515994 DOI: 10.7717/peerj.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic and its virus variants continue to pose a serious and long-lasting threat worldwide. To combat the pandemic, the world's largest COVID-19 vaccination campaign is currently ongoing. As of July 19th 2021, 26.2% of the world population has received at least one dose of a COVID-19 vaccine (1.04 billion), and one billion has been fully vaccinated, with very high vaccination rates in countries like Israel, Malta, and the UEA. Conversely, only 1% of people in low-income countries have received at least one dose with examples of vaccination frequency as low as 0.07% in the Democratic Republic of Congo. It is thus of paramount importance that more research on alternate methods to counter cell infection and propagation is undertaken that could be implemented in low-income countries. Moreover, an adjunctive therapeutic intervention would help to avoid disease exacerbation in high-rate vaccinated countries too. Based on experimental biochemical evidence on viral cell fusion and propagation, herein we identify (i) extracellular pH (epH), (ii) temperature, and (iii) humidity and osmolarity as critical factors. These factors are here in discussed along with their implications on mucus thick layer, proteases, abundance of sialic acid, vascular permeability and exudate/edema. Heated, humidified air containing sodium bicarbonate has long been used in the treatment of certain diseases, and here we argue that warm inhalation of sodium bicarbonate might successfully target these endpoints. Although we highlight the molecular/cellular basis and the signalling pathways to support this intervention, we underscore the need for clinical investigations to encourage further research and clinical trials. In addition, we think that such an approach is also important in light of the high mutation rate of this virus originating from a rapid increase.
Collapse
Affiliation(s)
- Franco Cicconetti
- Department of Emergency DEA-Surgery, University of Roma “La Sapienza”, Rome, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Valeria Madiai
- Laboratory of Diagnostics and Metrology, FSN-TECFIS-DIM, ENEA, Frascati-Rome, Italy
| | | | - Luigi Campanella
- Department of Chemistry, University of Roma “La Sapienza”, Rome, Italy
| | - Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Universidade de São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Laura Teodori
- Laboratory of Diagnostics and Metrology, FSN-TECFIS-DIM, ENEA, Frascati-Rome, Italy
| |
Collapse
|
4
|
Abstract
Controversy continues about the significance of fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent papers continue to advocate concern. However, designs of studies showing virus survival on surfaces under laboratory conditions are unsuitable for extrapolation to real life. Although viral RNA is frequently found on real-life surfaces, actual tests for infectious virus are almost entirely negative, even in hospitals with COVID-19 patients. Fomite transmission should be regarded as no more than a very minor component of this pandemic.
Collapse
Affiliation(s)
- Emanuel Goldman
- Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
5
|
Kampf G, Jatzwauk L. [Is Disinfection of Public Surfaces useful for the Prevention of SARS-CoV-2 Infections?]. DAS GESUNDHEITSWESEN 2021; 83:180-185. [PMID: 33540430 PMCID: PMC8043670 DOI: 10.1055/a-1335-4549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Measures to control SARS-CoV-2 often include the regular disinfection of public surfaces. The frequency of SARS-CoV-2 detection on surfaces in the surrounding of confirmed cases was evaluated in this systematic review. Overall, 26 studies showed 0 and 100% rates of contamination with SARS-CoV-2 RNA on surfaces in the surrounding of patients. Seven studies with at least 100 samples mostly showed detection rates between 1.4 and 19%. Two other studies did not detect infectious SARS-CoV-2 on any surface. Similar results were obtained from surfaces in the surrounding of confirmed SARS- and influenza-patients. A contamination of public surfaces with infectious virus is considerably less likely because there are much less potential viral spreaders around a surface, the contact time between a person and the surface is much shorter, and the asymptomatic carriers typically have no symptoms. In addition, a hand contact with a contaminated surface transfers only a small part of the viral load. A simple cleaning reduces the number of infectious viruses already by 2 log10-steps. That is why public surfaces should in general be cleaned because the wide use of biocidal agents for surface disinfection further increases the microbial selection pressure without an expectable health benefit.
Collapse
Affiliation(s)
- Günter Kampf
- Institut für Hygiene und Umweltmedizin, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - Lutz Jatzwauk
- Krankenhaushygiene, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
| |
Collapse
|
6
|
Doshi P, Powers JH. Determining the infectious potential of individuals with positive RT-PCR SARS-CoV-2 tests. Clin Infect Dis 2020; 73:e3900-e3901. [PMID: 33277652 PMCID: PMC7799214 DOI: 10.1093/cid/ciaa1819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - John H Powers
- Department of Medicine, George Washington University School of Medicine, Rockville, MD
| |
Collapse
|
7
|
Bueckert M, Gupta R, Gupta A, Garg M, Mazumder A. Infectivity of SARS-CoV-2 and Other Coronaviruses on Dry Surfaces: Potential for Indirect Transmission. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5211. [PMID: 33218120 PMCID: PMC7698891 DOI: 10.3390/ma13225211] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
The unwavering spread of COVID-19 has taken the world by storm. Preventive measures like social distancing and mask usage have been taken all around the globe but still, as of September 2020, the number of cases continues to rise in many countries. Evidently, these measures are insufficient. Although decreases in population density and surges in the public's usage of personal protective equipment can mitigate direct transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), indirect transmission of the virus is still probable. By summarizing the current state of knowledge on the stability of coronaviruses on dry materials, this review uncovers the high potential for SARS-CoV-2 transmission through contaminated surfaces (i.e., fomites) and prompts future research. Fully contextualized data on coronavirus persistence are presented. The methods and limitations to testing the stability of coronaviruses are explored, and the SARS-CoV-2 representativeness of different coronaviruses is analyzed. The factors which dictate the persistence of coronaviruses on surfaces (media, environmental conditions, and material-type) are investigated, and the review is concluded by encouraging material innovation to combat the current pandemic. To summarize, SARS-CoV-2 remains viable on the timescale of days on hard surfaces under ambient indoor conditions. Similarly, the virus is stable on human skin, signifying the necessity of hand hygiene amidst the current pandemic. There is an inverse relationship between SARS-CoV-2 surface persistence and temperature/humidity, and the virus is well suited to air-conditioned environments (room temperature, ~ 40% relative humidity). Sunlight may rapidly inactivate the virus, suggesting that indirect transmission predominantly occurs indoors. The development of antiviral materials and surface coatings would be an extremely effective method to mitigate the spread of COVID-19. To obtain applicable data on the persistence of coronaviruses and the efficiency of virucidal materials, future researchers should understand the common experimental limitations outlined in this review and plan their studies accordingly.
Collapse
Affiliation(s)
- Max Bueckert
- Department of Biochemistry & Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Rishi Gupta
- Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Aditi Gupta
- Mearns Centre for Learning—McPherson Library, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Mohit Garg
- Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| | - Asit Mazumder
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|