1
|
Hsiang HW, Girard BM, Ratkovits L, Campbell SE, Vizzard MA. Effects of pharmacological neurotrophin receptor inhibition on bladder function in female mice with cyclophosphamide-induced cystitis. FRONTIERS IN UROLOGY 2022; 2:1037511. [PMID: 37701182 PMCID: PMC10494527 DOI: 10.3389/fruro.2022.1037511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Interstitial cystitis/bladder pain syndrome is a chronic inflammatory pelvic pain syndrome of unknown etiology characterized by a number of lower urinary tract symptoms, including increased urinary urgency and frequency, bladder discomfort, decreased bladder capacity, and pelvic pain. While its etiology remains unknown, a large body of evidence suggests a role for changes in neurotrophin signaling, particularly that of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Here, we evaluated the effects of pharmacological inhibition of the NGF receptor TrkA, BDNF receptor TrkB, and pan-neurotrophin receptor p75NTR on bladder function in acute (4-hour) and chronic (8-day) mouse models of cyclophosphamide (CYP)-induced cystitis. TrkA inhibition via ARRY-954 significantly increased intermicturition interval and bladder capacity in control and acute and chronic CYP-treatment conditions. TrkB inhibition via ANA-12 significantly increased intermicturition interval and bladder capacity in acute, but not chronic, CYP-treatment conditions. Interestingly, intermicturition interval and bladder capacity significantly increased following p75NTR inhibition via LM11A-31 in the acute CYP-treatment condition, but decreased in the chronic condition, potentially due to compensatory changes in neurotrophin signaling or increased urothelial barrier dysfunction in the chronic condition. Our findings demonstrate that these receptors represent additional potent therapeutic targets in mice with cystitis and may be useful in the treatment of interstitial cystitis and other inflammatory disorders of the bladder.
Collapse
Affiliation(s)
- Harrison W. Hsiang
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Lexi Ratkovits
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
2
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
3
|
Comparison of Different In Vivo Animal Models of Brachial Plexus Avulsion and Its Application in Pain Study. Neural Plast 2020; 2020:8875915. [PMID: 33273909 PMCID: PMC7676973 DOI: 10.1155/2020/8875915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
Brachial plexus injuries (BPIs) are high-energy trauma that can result in serious functional problems in the affected upper extremities, and brachial plexus avulsion (BPA) could be considered the most severe type of them. The booming occurrence rate of BPA brings up devastating impact on patients' life. Complications of muscle atrophy, neuropathic pain, and denervation-associated psychological disorders are major challenges in the treatment of BPA. Animal models of BPA are good vehicles for this kind of research. Full understanding of the current in vivo BPA models, which could be classified into anterior approach avulsion, posterior approach avulsion, and closed approach avulsion groups, could help researchers select the appropriate type of models for their studies. Each group of the BPA model has its distinct merits and demerits. An ideal BPA model that can inherit the advantages and make up for the disadvantages is still required for further exploration.
Collapse
|
4
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury – a systematic review. J Neurosci Methods 2020; 345:108889. [DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
|
5
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
6
|
Oliveira MA, Heimfarth L, Passos FRS, Miguel-Dos-Santos R, Mingori MR, Moreira JCF, Lauton SS, Barreto RSS, Araújo AAS, Oliveira AP, Oliveira JT, Baptista AF, Martinez AMB, Quintans-Júnior LJ, Quintans JSS. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75 NTR and JNK pathway. Life Sci 2020; 241:117102. [PMID: 31790691 DOI: 10.1016/j.lfs.2019.117102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injuries are common conditions that often lead to dysfunctions. Although much knowledge exists on the several factors that mediate the complex biological process involved in peripheral nerve regeneration, there is a lack of effective treatments that ensure full functional recovery. Naringenin (NA) is the most abundant flavanone found in citrus fruits and it has promising neuroprotective, anti-inflammatory and antioxidant effects. This study aimed to enhance peripheral nerve regeneration using an inclusion complex containing NA and hydroxypropyl-β-cyclodextrin (HPβCD), named NA/HPβCD. A mouse sciatic nerve crush model was used to evaluate the effects of NA/HPβCD on nerve regeneration. Sensory and motor parameters, hyperalgesic behavior and the sciatic functional index (SFI), respectively, improved with NA treatment. Western blot analysis revealed that the levels of p75NTR ICD and p75NTR full length as well phospho-JNK/total JNK ratios were preserved by NA treatment. In addition, NA treatment was able to decrease levels of caspase 3. The concentrations of TNF-α and IL-1β were decreased in the lumbar spine, on the other hand there was an increase in IL-10. NA/HPβCD presented a better overall morphological profile but it was not able to increase the number of myelinated fibers. Thus, NA was able to enhance nerve regeneration, and NA/HPβCD decreased effective drug doses while maintaining the effect of the pure drug, demonstrating the advantage of using the complex over the pure compound.
Collapse
Affiliation(s)
- Marlange A Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rodrigo Miguel-Dos-Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Moara R Mingori
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sandra S Lauton
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI 64.049-550, Brazil
| | - Júlia T Oliveira
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Maria B Martinez
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| |
Collapse
|
7
|
CCL2-CCR2 Axis Potentiates NMDA Receptor Signaling to Aggravate Neuropathic Pain Induced by Brachial Plexus Avulsion. Neuroscience 2019; 425:29-38. [PMID: 31805255 DOI: 10.1016/j.neuroscience.2019.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/29/2023]
Abstract
Brachial plexus avulsion (BPA) represents the most devastating nerve injury in the upper extremity and is always considered as a sophisticated problem due to its resistance to most standard pain relief medications or neurosurgical interventions. There is also a lack of understanding on the underlying mechanisms. Our study aimed to investigate whether spinal CCL2-CCR2 signaling contributed to the development of neuropathic pain following BPA via modulating glutamate N-methyl-d-aspartate receptor (NMDAR). A rat model of BPA on lower trunk (C8-T1) was established, and the sham- and BPA-operated animals were intrathecally injected with saline, C-C chemokine receptor type 2 (CCR2) inhibitor INCB3344 and NMDAR antagonist DL-AP5 one week postoperatively, the behavioral performance of the treated animals and expressions of C-C motif ligand 2 (CCL2), CCR2, and N-methyl-D-aspartic acid receptor 2B (NR2B) in spinal cord sections of each group were examined. It was shown that BPA injury significantly reduced mechanic withdrawal thresholds the next day after surgery until the end of the observation. Both CCL2 and CCR2 expressions increased in BPA rats compared to those in sham rats. CCL2 was mainly localized in astrocytes, and CCR2 was preferably expressed on astrocytes and neurons. Besides, NMDAR subunit NR2B increased in BPA-operated rats, which was reversed in response to CCR2 and NR2B inhibition. However, these inhibitors didn't change the spinal NMDAR level in sham rats. CCR2 and NMDAR inhibition efficiently alleviated mechanical allodynia caused by BPA either at early or late phase of neuropathic pain. Collectively, CCL2-CCR2 axis is associated with mechanical pain after BPA by elevating NMDAR signaling.
Collapse
|
8
|
Kawarai Y, Orita S, Nakamura J, Miyamoto S, Suzuki M, Inage K, Hagiwara S, Suzuki T, Nakajima T, Akazawa T, Ohtori S. Changes in proinflammatory cytokines, neuropeptides, and microglia in an animal model of monosodium iodoacetate-induced hip osteoarthritis. J Orthop Res 2018; 36:2978-2986. [PMID: 29888808 DOI: 10.1002/jor.24065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/03/2018] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the local production of proinflammatory cytokines, pain-related sensory innervation of dorsal-root ganglia (DRG), and spinal changes in a rat model of induced hip osteoarthritis (OA). Seventy-five Sprague-Dawley rats were used, including 25 controls and 50 injected into the right hip joints (sham group, injected with 25 µl of sterile saline: N = 25; and monosodium iodoacetate (MIA) group, injected with 25 µl of sterile saline with 2 mg of MIA: N = 25). We measured the local production of TNF-α, immunoreactive (-ir) neurons for calcitonin gene-related peptide (CGRP), and growth associated protein-43 (GAP-43) in DRG, and immunoreactive neurons for ionized-calcium-binding adaptor molecule-1 (Iba-1) in the dorsal horn of spinal cord, on post-induction days 7, 14, 28, 42, and 56 (N = 5 rats/group/time point). For post-induction days 7-42, the MIA group presented significantly elevated concentrations of TNF-α than the other groups (p < 0.01), and a higher expression of CGRP-ir in FG-labeled DRG neurons than the sham group (p < 0.01). MIA rats also presented significantly more FG-labeled GAP-43-ir DRG neurons than the sham group on post-induction days 28, 42, and 56 (p < 0.05), and a significantly higher number of Iba-1-ir microglia in the ipsilateral dorsal horn than the other groups, on post-induction days 28, 42, and 56. The results suggest that in rat models, pain-related pathologies due to MIA-induced hip OA, originate from inflammation caused by cytokines, which leads to progressive, chronic neuronal damage that may cause neuropathic pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2978-2986, 2018.
Collapse
Affiliation(s)
- Yuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Shuichi Miyamoto
- Department of Orthopaedic Surgery, Kimitsu Chuo Hospital 1010 Sakurai, Kisarazu City, Chiba 292-8535, Japan
| | - Miyako Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Takayuki Nakajima
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| |
Collapse
|
9
|
Zhao Y, Wu T. Histone deacetylase inhibition inhibits brachial plexus avulsion-induced neuropathic pain. Muscle Nerve 2018; 58:434-440. [PMID: 29742796 DOI: 10.1002/mus.26160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/29/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neuropathic pain induced by brachial plexus avulsion (BPA) is a pathological condition. We hypothesized that inhibition of histone deacetylase (HDAC) could suppress BPA-induced neuropathic pain through inhibition of transient reception potential (TRP) overexpression and protein kinase B (Akt)-mediated mammalian target of rapamycin (mTOR) activation. METHODS We generated a rat BPA model; administered HDAC inhibitor tricostatin A (TSA) for 7 days postsurgery; and assessed the effects on HDAC expression, Akt phosphorylation, neuroinflammation, and mTOR activation. RESULTS TSA treatment alleviated BPA-induced mechanical hyperalgesia, suppressed Akt phosphorylation, and increased HDAC. We found suppressed proinflammatory cytokine levels, TRPV1 and TRPM8 expression, and mTOR activity in TSA-treated BPA rats. DISCUSSION Our results suggest that altered HDAC and Akt signaling are involved in BPA-induced neuropathic pain and that inhibition of HDAC could be an effective therapeutic approach in reducing neuropathic pain. Muscle Nerve 58: 434-440, 2018.
Collapse
Affiliation(s)
- Yingbo Zhao
- Department of Orthopedics, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng 252000, China
| | - Tianjian Wu
- Department of Hand & Foot Surgery, Gaotang People's Hospital, Liaocheng, China
| |
Collapse
|
10
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151:1-15. [PMID: 28112808 PMCID: PMC5382350 DOI: 10.1111/imm.12717] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise a broad family of biomolecules - most of which are peptides or small proteins - that support the growth, survival and differentiation of both developing and mature neurons. The prototypical example and best-characterized neurotrophic factor is nerve growth factor (NGF), which is widely recognized as a target-derived factor responsible for the survival and maintenance of the phenotype of specific subsets of peripheral neurons and basal forebrain cholinergic nuclei during development and maturation. In addition to being active in a wide array of non-nervous system cells, NGF is also synthesized by a range of cell types not considered as classical targets for innervation by NGF-dependent neurons; these include cells of the immune-haematopoietic lineage and populations in the brain involved in neuroendocrine functions. NGF concentrations are elevated in numerous inflammatory and autoimmune states such as multiple sclerosis, chronic arthritis, systemic lupus erythematosus and mastocytosis, in conjunction with increased accumulation of mast cells. Intriguingly, NGF seems to be linked also with diabetic pathology and insulin homeostasis. Mast cells and NGF appear involved in neuroimmune interactions and tissue inflammation. As mast cells are capable of producing and responding to NGF, this suggests that alterations in mast cell behaviour could provoke maladaptive neuroimmune tissue responses, including those of an autoimmune nature. Moreover, NGF exerts a modulatory role on sensory nociceptive nerve physiology in the adult, which appears to correlate with hyperalgesic phenomena occurring in tissue inflammation. NGF can therefore be viewed as a multifactorial modulator of neuro-immune-endocrine functions.
Collapse
Affiliation(s)
- Stephen D. Skaper
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
12
|
Rosa A, Freitas M, Rocha I, Chacur M. Gabapentin decreases microglial cells and reverses bilateral hyperalgesia and allodynia in rats with chronic myositis. Eur J Pharmacol 2017; 799:111-117. [DOI: 10.1016/j.ejphar.2017.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|