1
|
Usseglio N, Andrés JLD, Marchal JA, Moroni L, Nieto D. Photochemical corneal cross-linking: Evaluating the potential of a hand-held biopen. Mater Today Bio 2025; 31:101512. [PMID: 39935895 PMCID: PMC11810839 DOI: 10.1016/j.mtbio.2025.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/24/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
The generation of organized 3D tissue constructs that combines cells and photo-crosslinkable biomaterials has been demonstrated using a variety of 3D bioprinting technologies. These technologies have inspired the application for "in situ" bioprinting, resulting on hand-held tools called "Biopens" that can transfer bioprinting capabilities directly into the hands of the surgeons. Here, we have developed and validated a biopen for ophthalmological applications, specifically for corneal stromal regeneration using photochemical corneal crosslinking (CXL), as well as for cell bioprinting and, potentially, for corneal wound healing. We used the biopen to CXL, but also for fast crosslinking processes. Cytotoxicity, cell viability and immunofluorescence experiments were performed with human corneal stroma keratocytes (HCK) loaded inside the proposed bioink compositions. Photochemical cross-linking was performed to evaluate the biopen bioprinting functionality for corneal wound closure in porcine eyes. A full-thickness penetrating incision, 5 mm in length parallel to the limbus and perpendicular to the corneal surface, was made in the enucleated porcine cornea. The mechanical properties of cornea are imitated by tuning the proposed (GelMA/PEGDA/PI) bioink composition and crosslinking parameters, which envisage the potential for being translated to a clinical environment to corneal wound closure.
Collapse
Affiliation(s)
- Nadina Usseglio
- Advanced Biofabrication Laboratory - DNIETO LAB, Center for Interdisciplinary Chemical and Biology, CICA, University of La Coruña, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada- University of Granada, 18100, Granada, Spain
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER, Maastricht, the Netherlands
| | - Daniel Nieto
- Advanced Biofabrication Laboratory - DNIETO LAB, Center for Interdisciplinary Chemical and Biology, CICA, University of La Coruña, Spain
- Opportunius. Axencia Galega de Innovación, 15702, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Jafari Kafiabadi M, Ebrahimpour A, Ayatizadeh SH, Fereidooni R, Kamalinia A, Sadighi M, Biglari F, Moein SA. Temporary ectopic banking as a treatment option for mangled thumb: a case report. J Med Case Rep 2025; 19:35. [PMID: 39863882 PMCID: PMC11762125 DOI: 10.1186/s13256-025-05058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Management of the extensive soft tissue injuries remains a significant challenge in orthopedic and plastic reconstructive surgery. Since the thumb is responsible for 40% of the functions of the hand, saving and reconstructing a mangled thumb is essential for the patient's future. CASE PRESENTATION This case report describes the management of a severe occupational thumb injury in a 25-year-old white Persian male who sustained an occupational injury to his left thumb, resulting in extensive burn, crush injury to the distal and proximal phalanx, and severe soft tissue damage to the first metacarpal, thenar, and palmar areas. Necrosis necessitated amputation through the first metacarpophalangeal joint. Postdebridement observation revealed a viable first metacarpal bone but was exposed due to a lack of soft tissue. Given the wound contamination and infection risk, the first metacarpal bone was banked in the distal forearm. After a 4 week period of antibiotics, irrigation, debridement, and vacuum dressing, the thumb and soft tissue reconstruction were performed, retrieving the viable first metacarpal. The first metacarpophalangeal joint fusion was achieved with an intramedullary screw and two K-wires. A reverse adipofascial radial artery forearm flap and skin grafts from the left thigh were used for soft tissue reconstruction. CONCLUSION This case highlights the importance of a flexible, staged approach to hand trauma, emphasizing the utility of ectopic banking and reconstructive techniques in managing complex hand injuries. This report contributes to the ongoing dialogue on optimal strategies for hand reconstruction, particularly in cases where traditional immediate reconstruction is not feasible.
Collapse
Affiliation(s)
- Meisam Jafari Kafiabadi
- Department of Orthopedic Surgery, Clinical Research Development Unit of Shohada-E-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Ebrahimpour
- Department of Orthopedic Surgery, Clinical Research Development Unit of Shohada-E-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hamidreza Ayatizadeh
- Trauma Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Kamalinia
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sadighi
- Department of Orthopedic Surgery, Clinical Research Development Unit of Shohada-E-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farsad Biglari
- Department of Orthopedic Surgery, Clinical Research Development Unit of Shohada-E-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Arman Moein
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Jeannerat A, Meuli J, Peneveyre C, Jaccoud S, Chemali M, Thomas A, Liao Z, Abdel-Sayed P, Scaletta C, Hirt-Burri N, Applegate LA, Raffoul W, Laurent A. Bio-Enhanced Neoligaments Graft Bearing FE002 Primary Progenitor Tenocytes: Allogeneic Tissue Engineering & Surgical Proofs-of-Concept for Hand Ligament Regenerative Medicine. Pharmaceutics 2023; 15:1873. [PMID: 37514060 PMCID: PMC10385025 DOI: 10.3390/pharmaceutics15071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 105 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.
Collapse
Affiliation(s)
- Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Joachim Meuli
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Sandra Jaccoud
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopedics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michèle Chemali
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Axelle Thomas
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Zhifeng Liao
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Wassim Raffoul
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Plastic and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
4
|
Gomez-Cerezo MN, Perevoshchikova N, Ruan R, Moerman KM, Bindra R, Lloyd DG, Zheng MH, Saxby DJ, Vaquette C. Additively manufactured polyethylene terephthalate scaffolds for scapholunate interosseous ligament reconstruction. BIOMATERIALS ADVANCES 2023; 149:213397. [PMID: 37023566 DOI: 10.1016/j.bioadv.2023.213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue. The scaffold presented tensile stiffness in the range of 260 ± 38 N/mm and ultimate load of 113 ± 13 N, which would support physiological loading. A finite element analysis (FEA), using inverse finite element analysis (iFEA) for material property identification, showed an adequate fit between simulation and experimental data. The scaffold was then biofunctionalized using two different methods: injected with a Gelatin Methacryloyl solution containing human mesenchymal stem cell spheroids (hMSC) or seeded with tendon-derived stem cells (TDSC) and placed in a bioreactor to undergo cyclic deformation. The first approach demonstrated high cell viability, as cells migrated out of the spheroid and colonised the interstitial space of the scaffold. These cells adopted an elongated morphology suggesting the internal architecture of the scaffold exerted topographical guidance. The second method demonstrated the high resilience of the scaffold to cyclic deformation and the secretion of a fibroblastic related protein was enhanced by the mechanical stimulation. This process promoted the expression of relevant proteins, such as Tenomodulin (TNMD), indicating mechanical stimulation may enhance cell differentiation and be useful prior to surgical implantation. In conclusion, the PET scaffold presented several promising characteristics for the immediate mechanical stabilisation of disassociated scaphoid and lunate and, in the longer-term, the regeneration of the ruptured SLIL.
Collapse
|
5
|
Tang Y, Wang Z, Xiang L, Zhao Z, Cui W. Functional biomaterials for tendon/ligament repair and regeneration. Regen Biomater 2022; 9:rbac062. [PMID: 36176715 PMCID: PMC9514853 DOI: 10.1093/rb/rbac062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
With an increase in life expectancy and the popularity of high-intensity exercise, the frequency of tendon and ligament injuries has also increased. Owing to the specificity of its tissue, the rapid restoration of injured tendons and ligaments is challenging for treatment. This review summarizes the latest progress in cells, biomaterials, active molecules and construction technology in treating tendon/ligament injuries. The characteristics of supports made of different materials and the development and application of different manufacturing methods are discussed. The development of natural polymers, synthetic polymers and composite materials has boosted the use of scaffolds. In addition, the development of electrospinning and hydrogel technology has diversified the production and treatment of materials. First, this article briefly introduces the structure, function and biological characteristics of tendons/ligaments. Then, it summarizes the advantages and disadvantages of different materials, such as natural polymer scaffolds, synthetic polymer scaffolds, composite scaffolds and extracellular matrix (ECM)-derived biological scaffolds, in the application of tendon/ligament regeneration. We then discuss the latest applications of electrospun fiber scaffolds and hydrogels in regeneration engineering. Finally, we discuss the current problems and future directions in the development of biomaterials for restoring damaged tendons and ligaments.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
6
|
Lai CW, Shih CW, Chang CH. Analysis of collateral projections from the lateral orbitofrontal cortex to nucleus accumbens and basolateral amygdala in rats. J Neurophysiol 2022; 127:1535-1546. [PMID: 35507506 DOI: 10.1152/jn.00127.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orbitofrontal cortex (OFC) is an important brain area for executive functions. The OFC projects to both the nucleus accumbens (NAc) and the basolateral nucleus of the amygdala (BLA). These two pathways share some similar behavioral functions, but their anatomical and physiological properties have not been compared before. In this study, we first explored the connection of the lateral OFC (lOFC) to NAc core (NAcc) and/or BLA, especially the collateral projections (Experiment 1 and 2) with rats. In Experiment 1, fluorophore-conjugated retrograde tracers were locally infused into the NAcc and the BLA to sample neurons in the lOFC. Our results revealed that along the anterior-posterior axis of the lOFC, more NAcc- and/or BLA-projecting neurons were distributed toward the posterior end, but the average percentage of collateral projecting neurons at the four sampled lOFC levels remained fairly stable. In Experiment 2, antidromic single units in the lOFC responsive to the NAcc and/or the BLA stimulation were identified in anesthetized rats. However, we found that collateral projections from the lOFC to NAcc and BLA were sparse. We next studied the physiological characteristics of these two pathways (Experiment 3). In this experiment, orthodromic single units in the NAcc or the BLA responsive to the lOFC stimulation were located in anesthetized rats. Our results showed no difference in the evoked thresholds or the intensity-response probability curves between the two. Together, our results showed that these two pathways were similar in projecting neuron distribution and physiological characteristics.
Collapse
Affiliation(s)
- Chien-Wen Lai
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Wei Shih
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Hui Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Perevoshchikova N, Moerman KM, Akhbari B, Bindra R, Maharaj JN, Lloyd DG, Gomez Cerezo M, Carr A, Vaquette C, Saxby DJ. Finite element analysis of the performance of additively manufactured scaffolds for scapholunate ligament reconstruction. PLoS One 2021; 16:e0256528. [PMID: 34797871 PMCID: PMC8604338 DOI: 10.1371/journal.pone.0256528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g., tendon-based surgical reconstruction, screw-based fixation, fusion, or carpectomy) may restore wrist stability, but do not address regeneration of the ruptured ligament, and may result in wrist functional limitations and osteoarthritis. Recently a novel multiphasic bone-ligament-bone scaffold was proposed, which aims to reconstruct the ruptured ligament, and which can be 3D-printed using medical-grade polycaprolactone. This scaffold is composed of a central ligament-scaffold section and features a bone attachment terminal at either end. Since the ligament-scaffold is the primary load bearing structure during physiological wrist motion, its geometry, mechanical properties, and the surgical placement of the scaffold are critical for performance optimisation. This study presents a patient-specific computational biomechanical evaluation of the effect of scaffold length, and positioning of the bone attachment sites. Through segmentation and image processing of medical image data for natural wrist motion, detailed 3D geometries as well as patient-specific physiological wrist motion could be derived. This data formed the input for detailed finite element analysis, enabling computational of scaffold stress and strain distributions, which are key predictors of scaffold structural integrity. The computational analysis demonstrated that longer scaffolds present reduced peak scaffold stresses and a more homogeneous stress state compared to shorter scaffolds. Furthermore, it was found that scaffolds attached at proximal sites experience lower stresses than those attached at distal sites. However, scaffold length, rather than bone terminal location, most strongly influences peak stress. For each scaffold terminal placement configuration, a basic metric was computed indicative of bone fracture risk. This metric was the minimum distance from the bone surface to the internal scaffold bone terminal. Analysis of this minimum bone thickness data confirmed further optimisation of terminal locations is warranted.
Collapse
Affiliation(s)
- Nataliya Perevoshchikova
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, QLD, Australia
| | - Kevin M. Moerman
- Biomechanics Research Centre, National University of Ireland Galway, Galway, Ireland
- Center for Extreme Bionics at the Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Bardiya Akhbari
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Randy Bindra
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, QLD, Australia
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Jayishni N. Maharaj
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, QLD, Australia
| | - David G. Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, QLD, Australia
| | | | - Amelia Carr
- School of Dentistry, University of Queensland, Herston, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, University of Queensland, Herston, QLD, Australia
| | - David J. Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Silva M, Gomes C, Pinho I, Gonçalves H, Vale AC, Covas JA, Alves NM, Paiva MC. Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. NANOMATERIALS 2021; 11:nano11112796. [PMID: 34835562 PMCID: PMC8625229 DOI: 10.3390/nano11112796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023]
Abstract
The anterior cruciate ligament (ACL) is one of the most prone to injury in the human body. Due to its insufficient vascularization and low regenerative capacity, surgery is often required when it is ruptured. Most of the current tissue engineering (TE) strategies are based on scaffolds produced with fibers due to the natural ligament's fibrous structure. In the present work, composite filaments based on poly(L-lactic acid) (PLA) reinforced with graphite nanoplatelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)] were produced by melt mixing, ensuring good filler dispersion. These filaments were produced with diameters of 0.25 mm and 1.75 mm for textile-engineered and 3D-printed ligament scaffolds, respectively. The resulting composite filaments are thermally stable, and the incorporation of graphite increases the stiffness of the composites and decreases the electrical resistivity, as compared to PLA. None of the filaments suffered significant degradation after 27 days. The composite filaments were processed into 3D scaffolds with finely controlled dimensions and porosity by textile-engineered and additive fabrication techniques, demonstrating their potential for ligament TE applications.
Collapse
Affiliation(s)
- Magda Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Carina Gomes
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Isabel Pinho
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Hugo Gonçalves
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Ana C. Vale
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - José A. Covas
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
| | - Natália M. Alves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; (M.S.); (A.C.V.)
- ICVS/3B’s, Associate PT Government Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Correspondence: (N.M.A.); (M.C.P.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal; (C.G.); (I.P.); (H.G.); (J.A.C.)
- Correspondence: (N.M.A.); (M.C.P.)
| |
Collapse
|
9
|
Lui H, Vaquette C, Denbeigh JM, Bindra R, Kakar S, van Wijnen AJ. Multiphasic scaffold for scapholunate interosseous ligament reconstruction: A study in the rabbit knee. J Orthop Res 2021; 39:1811-1824. [PMID: 32579261 PMCID: PMC7758190 DOI: 10.1002/jor.24785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Scapholunate interosseous ligament tears are a common wrist injury in young and active patients that can lead to suboptimal outcomes after repair. This research aims to assess a multiphasic scaffold using 3D-printing for reconstruction of the dorsal scapholunate interosseous ligament. The scaffold was surgically implanted in vivo in the position of the native rabbit medial collateral ligament. Two branches of treatment were implemented in the study. In the first group, the rabbits (n = 8) had the knee joint fixed in flexion for 4 weeks using 1.4 mm K-wires prior to sample harvesting. The second group (n = 8) had the rabbit knee joint immobilized for 4 weeks prior to K-wire removal and mobilization for an additional 4 weeks prior to sample harvesting. Overall, samples were harvested at 4 weeks post-surgery (immobilized group) and eight weeks post-surgery (mobilized group). Mechanical tensile testing (n = 5/group) and histology (n = 3/group) of the constructs were conducted. Tissue integration and maturation were observed resulting in increased mechanical strength of the operated joint at 8 weeks (P < .05). Bone and ligament tissues were regenerated in their respective compartments with structural and mechanical properties approaching those reported for the human dorsal SLIL ligament. Clinical Significance: This proof of concept study has demonstrated that the synthetic multiphasic scaffold was capable of regenerating both bone and ligament while also withstanding the physiological load once implanted in the rabbit knee. The artificial scaffold may provide an alternative to current techniques for reconstruction of scapholunate instability or other ligament injuries in the hand and wrist.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Janet M. Denbeigh
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America
| | - Randip Bindra
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia,Gold Coast University Hospital, Department of Orthopaedic Surgery, Gold Coast, Queensland, Australia
| | - Sanjeev Kakar
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| | - Andre J. van Wijnen
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota, United States of America,Corresponding AuthorsProf Andre van Wijnen, Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA, +1-507-293-2105, , Dr Sanjeev Kakar, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
10
|
Lui H, Denbeigh J, Vaquette C, Tran HM, Dietz AB, Cool SM, Dudakovic A, Kakar S, van Wijnen AJ. Fibroblastic differentiation of mesenchymal stem/stromal cells (MSCs) is enhanced by hypoxia in 3D cultures treated with bone morphogenetic protein 6 (BMP6) and growth and differentiation factor 5 (GDF5). Gene 2021; 788:145662. [PMID: 33887373 DOI: 10.1016/j.gene.2021.145662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e., BMP6 and GDF5) to mediate collagenous ECM synthesis and tissue maturation in vitro under normoxic and hypoxic conditions based on the hypothesis that BMP6 and GDF5 are components of normal paracrine signalling events that support connective tissue homeostasis. METHODS Human adipose-derived MSCs were seeded on 3D-printed medical-grade polycaprolactone (PCL) scaffolds using a bioreactor and incubated in media containing GDF5 and/or BMP6 for 21 days in either normoxic (5% oxygen) or hypoxic (2% oxygen) conditions. Constructs were harvested on Day 3 and 21 for cell viability analysis by live/dead staining, structural analysis by scanning electron microscopy, mRNA levels by RTqPCR analysis, and in situ deposition of proteins by immunofluorescence microscopy. RESULTS Pro-fibroblastic gene expression is enhanced by hypoxic culture conditions compared to normoxic conditions. Hypoxia renders cells more responsive to treatment with BMP6 as reflected by increased expression of ECM mRNA levels on Day 3 with sustained expression until Day 21. GDF5 was not particularly effective either in the absence or presence of BMP6. CONCLUSIONS Fibroblastic differentiation of MSCs is selectively enhanced by BMP6 and not GDF5. Environmental factors (i.e., hypoxia) also influenced the responsiveness of cells to this morphogen.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Hoai My Tran
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
11
|
González-Quevedo D, Díaz-Ramos M, Chato-Astrain J, Sánchez-Porras D, Tamimi I, Campos A, Campos F, Carriel V. Improving the regenerative microenvironment during tendon healing by using nanostructured fibrin/agarose-based hydrogels in a rat Achilles tendon injury model. Bone Joint J 2020; 102-B:1095-1106. [PMID: 32731821 DOI: 10.1302/0301-620x.102b8.bjj-2019-1143.r2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS Achilles tendon injuries are a frequent problem in orthopaedic surgery due to their limited healing capacity and the controversy surrounding surgical treatment. In recent years, tissue engineering research has focused on the development of biomaterials to improve this healing process. The aim of this study was to analyze the effect of tendon augmentation with a nanostructured fibrin-agarose hydrogel (NFAH) or genipin cross-linked nanostructured fibrin-agarose hydrogel (GP-NFAH), on the healing process of the Achilles tendon in rats. METHODS NFAH, GP-NFAH, and MatriDerm (control) scaffolds were generated (five in each group). A biomechanical and cell-biomaterial-interaction characterization of these biomaterials was then performed: Live/Dead Cell Viability Assay, water-soluble tetrazolium salt-1 (WST-1) assay, and DNA-released after 48 hours. Additionally, a complete section of the left Achilles tendon was made in 24 Wistar rats. Animals were separated into four treatment groups (six in each group): direct repair (Control), tendon repair with MatriDerm, or NFAH, or GP-NFAH. Animals were euthanized for further histological analyses after four or eight weeks post-surgery. The Achilles tendons were harvested and a histopathological analysis was performed. RESULTS Tensile test revealed that NFAH and GP-NFAH had significantly higher overall biomechanical properties compared with MatriDerm. Moreover, biological studies confirmed a high cell viability in all biomaterials, especially in NFAH. In addition, in vivo evaluation of repaired tendons using biomaterials (NFAH, GP-NFAH, and MatriDerm) resulted in better organization of the collagen fibres and cell alignment without clinical complications than direct repair, with a better histological score in GP-NFAH. CONCLUSION In this animal model we demonstrated that NFAH and GP-NFAH had the potential to improve tendon healing following a surgical repair. However, future studies are needed to determine the clinical usefulness of these engineered strategies. Cite this article: Bone Joint J 2020;102-B(8):1095-1106.
Collapse
Affiliation(s)
- David González-Quevedo
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain.,University of Granada, Granada, Spain
| | - Miriam Díaz-Ramos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- University of Granada, Granada, Spain.,Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - Iskandar Tamimi
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain
| | - Antonio Campos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| | - Fernando Campos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| |
Collapse
|
12
|
Silva M, Ferreira FN, Alves NM, Paiva MC. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology 2020; 18:23. [PMID: 32000800 PMCID: PMC6993465 DOI: 10.1186/s12951-019-0556-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Ligaments and tendons are fibrous tissues with poor vascularity and limited regeneration capacity. Currently, a ligament/tendon injury often require a surgical procedure using auto- or allografts that present some limitations. These inadequacies combined with the significant economic and health impact have prompted the development of tissue engineering approaches. Several natural and synthetic biodegradable polymers as well as composites, blends and hybrids based on such materials have been used to produce tendon and ligament scaffolds. Given the complex structure of native tissues, the production of fiber-based scaffolds has been the preferred option for tendon/ligament tissue engineering. Electrospinning and several textile methods such as twisting, braiding and knitting have been used to produce these scaffolds. This review focuses on the developments achieved in the preparation of tendon/ligament scaffolds based on different biodegradable polymers. Several examples are overviewed and their processing methodologies, as well as their biological and mechanical performances, are discussed.
Collapse
Affiliation(s)
- Magda Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Fernando N Ferreira
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal.
| | - Maria C Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal.
| |
Collapse
|
13
|
Novel multimodal MRI and MicroCT imaging approach to quantify angiogenesis and 3D vascular architecture of biomaterials. Sci Rep 2019; 9:19474. [PMID: 31857617 PMCID: PMC6923434 DOI: 10.1038/s41598-019-55411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Quantitative assessment of functional perfusion capacity and vessel architecture is critical when validating biomaterials for regenerative medicine purposes and requires high-tech analytical methods. Here, combining two clinically relevant imaging techniques, (magnetic resonance imaging; MRI and microcomputed tomography; MicroCT) and using the chorioallantoic membrane (CAM) assay, we present and validate a novel functional and morphological three-dimensional (3D) analysis strategy to study neovascularization in biomaterials relevant for bone regeneration. Using our new pump-assisted approach, the two scaffolds, Optimaix (laminar structure mimicking entities of the diaphysis) and DegraPol (highly porous resembling spongy bone), were shown to directly affect the architecture of the ingrowing neovasculature. Perfusion capacity (MRI) and total vessel volume (MicroCT) strongly correlated for both biomaterials, suggesting that our approach allows for a comprehensive evaluation of the vascularization pattern and efficiency of biomaterials. Being compliant with the 3R-principles (replacement, reduction and refinement), the well-established and easy-to-handle CAM model offers many advantages such as low costs, immune-incompetence and short experimental times with high-grade read-outs when compared to conventional animal models. Therefore, combined with our imaging-guided approach it represents a powerful tool to study angiogenesis in biomaterials.
Collapse
|
14
|
Lui H, Bindra R, Baldwin J, Ivanovski S, Vaquette C. Additively Manufactured Multiphasic Bone-Ligament-Bone Scaffold for Scapholunate Interosseous Ligament Reconstruction. Adv Healthc Mater 2019; 8:e1900133. [PMID: 31112356 DOI: 10.1002/adhm.201900133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/20/2019] [Indexed: 02/02/2023]
Abstract
The scapholunate interosseous ligament (SLIL) is a frequently torn wrist ligament, and current surgical options for SLIL tears are suboptimal. This research aims to develop a novel multiphasic bone-ligament-bone scaffold (BLB) with a porous interface using 3D-printing and cell sheet technology for the reconstruction of the dorsal scapholunate interosseous ligament. The BLB comprises two bone compartments bridged by aligned polycaprolactone fibers mimicking the architecture of the native tissue. Mechanical testing of the BLBs shows their ability to withstand physiological forces. Combination of the BLB with human bone marrow mesenchymal stem cell sheet demonstrates that the harvesting did not compromise cell viability, while allowing homogeneous distribution in the ligament compartment. The BLBs are loaded with cell sheets and bone morphogenetic protein-2 in the ligament and bone compartment respectively prior to ectopic implantation into athymic rats. The histology demonstrates rapid tissue infiltration, high vascularization, and more importantly the maintenance of the compartmentalization as bone formation remains localized to the bone compartment despite the porous interface. The cells in the ligament compartment become preferentially aligned, and this proof-of-concept study demonstrates that the BLB can provide sufficient compartmentalization and fiber guiding properties necessary for the regeneration of the dorsal SLIL.
Collapse
Affiliation(s)
- Hayman Lui
- School of Medicine, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD, 4215, Australia
| | - Randy Bindra
- School of Medicine, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD, 4215, Australia
| | - Jeremy Baldwin
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, 4059, Australia
| | - Saso Ivanovski
- School of Dentistry, the University of Queensland, Herston, 4006, Queensland, Australia
| | - Cedryck Vaquette
- Centre in Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, 4059, Australia
- School of Dentistry, the University of Queensland, Herston, 4006, Queensland, Australia
| |
Collapse
|
15
|
Vascular Endothelial Growth Factor Enhances Proliferation of Human Tenocytes and Promotes Tenogenic Gene Expression. Plast Reconstr Surg 2019; 142:1240-1247. [PMID: 30113440 DOI: 10.1097/prs.0000000000004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In obtaining human tenocytes for tendon tissue engineering, a low proliferation rate and phenotype loss during passaging is a problem. It was the authors' aim to evaluate the influence of vascular endothelial growth factor (VEGF) on human tenocyte growth and gene expression. METHODS Human tenocytes were exposed to human VEGF in various concentrations (5, 10, and 20 ng/ml) for 5 days. Cell proliferation was counted and expression of tendon-related genes was analyzed. RESULTS Tenocyte count was 1.4 × 10(5)/ml, 2.7 × 10(5)/ml, 2.3 × 10(5)/ml, and 3.7 × 10(5)/ml for 0, 5, 10, and 20 ng/ml VEGF, respectively. Expression of Col1 was up-regulated 6.4 ± 4.2-fold, 60.1 ± 21.6-fold, and 15.8 ± 10.2-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant with p < 0.05. Col3 was down-regulated to 0.2 ± 0.1-fold, 0.3 ± 0.1-fold, and 0.1 ± 0.03-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant. Eln was up-regulated 2.3 ± 1.7-fold, 25.5 ± 10.9-fold, and 16.6 ± 9.0-fold for 5, 10, and 20 ng/ml VEGF; differences were significant for 10 and 20 ng/ml VEGF. TSC was down-regulated to 0.3 ± 0.1-fold and 0.3 ± 0.1-fold for 5 and 20 ng/ml VEGF; differences were significant for 5 and 20 ng/ml. SCX was up-regulated to 31.3 ± 8.5-fold, 49.1 ± 23.4-fold, and 20.9 ± 9.5-fold for 5, 10, and 20 ng/ml VEGF; all changes were significant. CONCLUSIONS VEGF enhances proliferation and expression of tendon-related genes in human tenocytes. It could therefore be a useful addition for tenocyte cultivation.
Collapse
|
16
|
Bouguéon G, Kauss T, Dessane B, Barthélémy P, Crauste-Manciet S. Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discov Today 2019; 24:163-178. [DOI: 10.1016/j.drudis.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
|
17
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|