1
|
Koopman JE, de Groot LG, Zuidam JM, Duraku LS, Hooijmans CR, Hundepool CA. Does short-term intraoperative electrical stimulation enhance nerve regeneration following peripheral nerve repair? A systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2025:S1748-6815(25)00219-0. [PMID: 40199698 DOI: 10.1016/j.bjps.2025.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Although intraoperative electrical nerve stimulation appears to be a promising neuroenhancing adjunct to peripheral nerve repair, insight into its effects on nerve regeneration is essential to advocate its application in clinical settings. OBJECTIVE This study examined whether electrical stimulation during microsurgical repair of peripheral nerve injury results in enhanced nerve regeneration compared to suture repair alone in experimental animals. METHODS A systematic search in Embase, MEDLINE, Web of Science, and Google Scholar databases was performed from inception to March 22, 2024. The search included animal studies assessing outcomes following peripheral nerve repair with and without intraoperative electrical stimulation. Outcomes were subdivided into 4 categories: motor function, sensory function, electrophysiology, and histology. We calculated standardized mean differences and combined these using random effects models to estimate the overall effect. The risk of bias was assessed using the SYRCLE tool. RESULTS From 3615 references, 21 articles were included. Thirteen studies evaluated motor functional outcomes and showed that electrical stimulation improved functional index, muscle mass, muscle force, footstep accuracy, footprint, and joint angle measures. Six studies examined sensory function and found that electrical stimulation improved mechanical algesimetry. Nine studies assessed electrophysiology outcomes. Although conduction velocity did not differ between the groups, electrical stimulation resulted in a higher amplitude and lower latency. Twenty studies evaluated the histological outcomes and demonstrated increased axon count and myelin thickness, whereas axon diameter and G-ratio did not differ. DISCUSSION The results suggest that intraoperative electrical stimulation following peripheral nerve repair accelerates and improves nerve regeneration compared with nerve repair alone. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023455066.
Collapse
Affiliation(s)
- Jaimy E Koopman
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Lucas G de Groot
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jelle M Zuidam
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liron S Duraku
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Caroline A Hundepool
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Saffari S, Shin AY, Pulos N. Nerve Autografts Versus Allografts for Mixed Motor/Sensory Nerve Reconstruction. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:694-699. [PMID: 39381403 PMCID: PMC11456634 DOI: 10.1016/j.jhsg.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Reconstruction of peripheral mixed motor/sensory nerves using autografts has remained the gold standard. Inconsistent and nonphysiologic results across nerve allograft studies, including successful and failed motor reinnervation, have limited the current clinical application of nerve allografts to noncritical small-diameter sensory nerve defects less than 3 cm. This scoping review aimed to compare outcomes in both basic science and clinical applications of autograft and allograft nerve reconstruction for mixed motor/sensory nerves.
Collapse
Affiliation(s)
- Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Alexander Y. Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Nicholas Pulos
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
O'Brien AL, West JM, Saffari TM, Nguyen M, Moore AM. Promoting Nerve Regeneration: Electrical Stimulation, Gene Therapy, and Beyond. Physiology (Bethesda) 2022; 37:0. [PMID: 35820181 DOI: 10.1152/physiol.00008.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerve injuries often result in life-altering functional deficits even with optimal management. Unlike the central nervous system, peripheral nerves have the ability to regenerate lost axons after injury; however, axonal regeneration does not equate to full restoration of function. To overcome this physiological shortcoming, advances in nerve regeneration and repair are paramount, including electrical stimulation, gene therapy, and surgical technique advancements.
Collapse
Affiliation(s)
- Andrew L O'Brien
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Julie M West
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tiam M Saffari
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Minh Nguyen
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
4
|
Heinzel JC, Dadun LF, Prahm C, Winter N, Bressler M, Lauer H, Ritter J, Daigeler A, Kolbenschlag J. Beyond the Knife-Reviewing the Interplay of Psychosocial Factors and Peripheral Nerve Lesions. J Pers Med 2021; 11:jpm11111200. [PMID: 34834552 PMCID: PMC8624495 DOI: 10.3390/jpm11111200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve injuries are a common clinical problem. They not only affect the physical capabilities of the injured person due to loss of motor or sensory function but also have a significant impact on psychosocial aspects of life. The aim of this work is to review the interplay of psychosocial factors and peripheral nerve lesions. By reviewing the published literature, we identified several factors to be heavily influenced by peripheral nerve lesions. In addition to psychological factors like pain, depression, catastrophizing and stress, social factors like employment status and worker's compensation status could be identified to be influenced by peripheral nerve lesions as well as serving as predictors of functional outcome themselves, respectively. This work sheds a light not only on the impact of peripheral nerve lesions on psychosocial aspects of life, but also on the prognostic values of these factors of functional outcome. Interdisciplinary, individualized treatment of patients is required to identify patient at risk for adverse outcomes and provide them with emotional support when adapting to their new life situation.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
- Correspondence: ; Tel.: +49-7071-6061038
| | - Lucy F. Dadun
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Natalie Winter
- Department of Neurology, Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany;
| | - Michael Bressler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| |
Collapse
|
5
|
Mathot F, Saffari TM, Rbia N, Nijhuis TH, Bishop AT, Hovius SE, Shin AY. Functional Outcomes of Nerve Allografts Seeded with Undifferentiated and Differentiated Mesenchymal Stem Cells in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2021; 148:354-365. [PMID: 34153019 PMCID: PMC8373640 DOI: 10.1097/prs.0000000000008191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mesenchymal stem cells have the potential to produce neurotrophic growth factors and establish a supportive microenvironment for neural regeneration. The purpose of this study was to determine the effect of undifferentiated and differentiated mesenchymal stem cells dynamically seeded onto decellularized nerve allografts on functional outcomes when used in peripheral nerve repair. METHODS In 80 Lewis rats, a 10-mm sciatic nerve defect was reconstructed with (1) autograft, (2) decellularized allograft, (3) decellularized allograft seeded with undifferentiated mesenchymal stem cells, or (4) decellularized allograft seeded with mesenchymal stem cells differentiated into Schwann cell-like cells. Nerve regeneration was evaluated over time by cross-sectional tibial muscle ultrasound measurements, and at 12 and 16 weeks by isometric tetanic force measurements, compound muscle action potentials, muscle mass, histology, and immunofluorescence analyses. RESULTS At 12 weeks, undifferentiated mesenchymal stem cells significantly improved isometric tetanic force measurement and compound muscle action potential outcomes compared to decellularized allograft alone, whereas differentiated mesenchymal stem cells significantly improved compound muscle action potential outcomes. The autografts outperformed both stem cell groups histologically at 12 weeks. At 16 weeks, functional outcomes normalized between groups. At both time points, the effect of undifferentiated versus differentiated mesenchymal stem cells was not significantly different. CONCLUSIONS Undifferentiated and differentiated mesenchymal stem cells significantly improved functional outcomes of decellularized allografts at 12 weeks and were similar to autograft results in the majority of measurements. At 16 weeks, outcomes normalized as expected. Although differences between both cell types were not statistically significant, undifferentiated mesenchymal stem cells improved functional outcomes of decellularized nerve allografts to a greater extent and had practical benefits for clinical translation by limiting preparation time and costs.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tiam M. Saffari
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim H.J. Nijhuis
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allen T. Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven E.R. Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
6
|
Surgical Angiogenesis of Decellularized Nerve Allografts Improves Early Functional Recovery in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2021; 148:561-570. [PMID: 34292916 DOI: 10.1097/prs.0000000000008291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Surgical angiogenesis applied to nerve grafts has been suggested to enhance nerve regeneration after nerve injury. The authors hypothesized that surgical angiogenesis to decellularized nerve allografts would improve functional recovery in a rat sciatic nerve defect model. METHODS Sixty Lewis rats were divided in three groups of 20 animals each. Unilateral sciatic nerve defects were repaired with (1) autografts, (2) decellularized allografts, and (3) decellularized allografts wrapped with a superficial inferior epigastric artery fascial flap to add surgical angiogenesis. Twelve and 16 weeks after surgery, nerve regeneration was assessed using functional, electrophysiologic, histologic, and immunofluorescence analyses. Ultrasonography was used during the survival period to noninvasively evaluate muscle atrophy and reinnervation by measuring cross-sectional muscle area. RESULTS Surgical angiogenesis of allografts demonstrated significantly improved isometric tetanic force recovery at 12 weeks, compared to allograft alone, which normalized between groups at 16 weeks. Cross-sectional muscle areas showed no differences between groups. Electrophysiology showed superiority of autografts at both time points. No differences were found in histologic analysis, besides a significantly inferior N ratio in allografts at 12 weeks. Immunofluorescent expression of CD34, indicating vascularity, was significantly enhanced in the superficial inferior epigastric artery fascial group compared to allografts at 12 weeks, with highest expression at 16 weeks compared to all groups. CONCLUSION Surgical angiogenesis with an adipofascial flap to the nerve allograft increases vascularity in the nerve graft, with subsequent improvement of early muscle force recovery, comparable to autografts.
Collapse
|