1
|
Randall ZD, Navarro B, Dy CJ. Outcome Measures after Peripheral Nerve Injury: Past, Present and Future. J Hand Surg Asian Pac Vol 2025; 30:113-118. [PMID: 39725550 DOI: 10.1142/s2424835525300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Peripheral nerve injuries (PNI) present substantial challenges due to variability in injury severity and limited regenerative capabilities. Historically, PNI research has focussed on measures such as subjective surgeon outcome grading, two-point discrimination (2PD) and the Medical Research Council (MRC) grading system. While these methods have use, there are also limitations related to subjectivity and sensitivity. Electrophysiological studies, including electromyography (EMG) and nerve conduction studies (NCS), provide detailed insights but are invasive and resource intensive. Currently, the landscape of outcome measurements in PNI research is diverse, incorporating a mix of surgeon-scored, patient-reported and objective measures. Advancements in wearable devices and motion-tracking technologies offer the potential for continuous, real-time monitoring of patient recovery. These innovations can provide a more comprehensive and objective view of functional recovery, moving beyond the limitations of periodic clinical assessments. The primary limitation in current PNI research is the lack of standardisation in outcome measures and the arbitrary timing of assessments. This variability complicates data interpretation and comparative effectiveness research. Standardising the selection and timing of outcome measures is crucial for enhancing the reliability of research findings and facilitating collaborative studies. Level of Evidence: Level V (Diagnostic).
Collapse
Affiliation(s)
| | | | - Christopher J Dy
- Washington University School of Medicine, St Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Costa NN, dos Santos JF, Aranha MFDAC, Coelho EWF, Paes VLS, de Oliveira RDCS. Repair methods in peripheral nerves after traumatic injuries: a systematic literature review. Acta Cir Bras 2025; 40:e401225. [PMID: 40008718 PMCID: PMC11849802 DOI: 10.1590/acb401225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
PURPOSE To identify and describe the most used surgical repair methods for traumatic injuries to peripheral nerves, as well as highlight the causes of trauma to peripheral nerves and the most prevalent traumatized nerves. METHODS This is a systematic literature review using the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The searches were carried out in PubMED, in the time window from January 2018 to December 2022. RESULTS In total, 3,687 articles were collected, of which, after applying the inclusion and exclusion filters and analyzing the risk of bias, 34 articles remained. It was observed that the age of the injury and type of nerve repair strongly influence the recovery of patients. The most identified trauma repair procedures were neurolysis, direct suturing, grafting, and nerve transfer. Among these four procedures, direct suturing is currently preferred. CONCLUSION Several repair methods can be used in peripheral nerve injuries, with emphasis on direct suturing. However, nerve transfer proves to be a differential in those cases in which repair is delayed or the first treatment options have failed, which shows that each method will be used according to the indication for each case.
Collapse
Affiliation(s)
- Naely Nobre Costa
- Universidade do Estado do Pará – Medical School – Belém (PA) – Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Bejar-Chapa M, Rossi N, King NC, Kostyra DM, Hussey MR, McGuire KR, Randolph MA, Redmond RW, Winograd JM. Comparison of Photochemically Sealed Commercial Biomembranes for Nerve Regeneration. J Funct Biomater 2025; 16:50. [PMID: 39997584 PMCID: PMC11856221 DOI: 10.3390/jfb16020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries affect 13-23 per 100,000 people annually in the U.S. and often result in motor and sensory deficits. Microsurgical suture repair (SR) is the standard treatment but is technically challenging and associated with complications. Photochemical tissue bonding (PTB), which uses light and a photoactivated dye to bond collagenous tissues, offers a promising alternative. We compared PTB with commercially available collagen membranes for SR and PTB using cryopreserved human amnion (HAM) in a rat sciatic nerve transection model. In total, 75 Lewis rats underwent nerve repair with one of five methods: SR, PTB-HAM, PTB with commercial collagenous membranes (human amnion monolayer (AML), human amnion-chorion-amnion trilayer (ATL), or swine intestinal submucosa (SIS)). Functional recovery was assessed with walking tracks and the Static Sciatic Index (SSI) at days 30, 60, 90, and 120; histological evaluations at days 30 and 120 examined inflammation, axon density, and fascicle structure. No significant differences in SSI scores were found between groups, though PTB-AML and PTB-SIS improved over time. Histology showed inflammation at day 30 that decreased by day 120. Histomorphometry revealed similar axon regeneration across groups. These results suggest that PTB with commercial membranes is a viable alternative to SR.
Collapse
Affiliation(s)
- Maria Bejar-Chapa
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicolò Rossi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicholas C. King
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David M. Kostyra
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Madison R. Hussey
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kalyn R. McGuire
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark A. Randolph
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan M. Winograd
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Qiu P, Wang L, Wang J, Wang X, Xu J, An X, Han F, Dong Z, Zhang J, Shi P, Niu Q. Adhesive chitosan-based hybrid biohydrogels for peripheral nerve injury repair. Front Cell Dev Biol 2024; 12:1499766. [PMID: 39610708 PMCID: PMC11602492 DOI: 10.3389/fcell.2024.1499766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
With the rapid progress of industrialization, the incidence of peripheral nerve injuries caused by trauma has been continuously increasing. These injuries result in a significant number of disabilities and irreversible functional impairments, not only severely impacting the health and quality of life of patients but also placing a heavy economic burden on families and society. Effectively promoting peripheral nerve regeneration has thus become a key focus and challenge in current research. In recent years, hybrid biohydrogels with adhesive properties have gained widespread attention due to their excellent biocompatibility, mechanical stability, conductivity, and biodegradability. These materials can provide an optimal microenvironment to promote neuron adhesion and axonal extension while offering outstanding mechanical strength to meet the fixation requirements in clinical surgeries. This paper systematically reviews the application of adhesive hybrid biohydrogels in peripheral nerve injury repair, highlighting the latest research progress in promoting nerve regeneration and improving functional recovery, and discusses the challenges and future prospects for their clinical application.
Collapse
Affiliation(s)
- Pengjia Qiu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Lei Wang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Jing Wang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Xingdong Wang
- Department of Orthopedics, Sichuan Gemflower Hospital, North Sichuan Medical College, Sichuan, China
| | - Jianchao Xu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Xiaokai An
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Fengwang Han
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Zhao Dong
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Jiangtao Zhang
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Peiwen Shi
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| | - Qiang Niu
- Department of Orthopedics, Gaoyang County Hospital, Baoding, Hebei Province, China
| |
Collapse
|
5
|
Clifford AL, Klifto CS, Li NY. Nerve Coaptation in 2023: Adjuncts to Nerve Repair Beyond Suture. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:705-710. [PMID: 39381375 PMCID: PMC11456665 DOI: 10.1016/j.jhsg.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Effective nerve coaptation entails tensionless repair of healthy fascicles with intact fascicular architecture and a well-vascularized environment, supportive of the regenerative cellular behaviors of neurons, immune cells, and Schwann cells. Suture coaptations have historically been used to ensure that these criteria are met for end-to-end repair, nerve transfers, and allograft or autograft reconstructions; however, unfortunately, overall restoration of function remains poor. As optimal coaptation is required for return of sensorimotor function, adjunct biomaterials are increasingly being enlisted attempting to optimize these suture-based coaptations. The purpose of this review was to discuss the biological, preclinical, and clinical data for the use of fibrin glue and nerve wraps made of type 1 collagen, porcine small intestine submucosa, chitosan, and human amniotic membrane. This study provides available data on each material's ability to optimize the regenerative potential of nerve repair as well as available outcomes data. Although each biomaterial discussed has benefits to nerve regeneration, at large, data remain heterogeneous, and continued investigation is required to fully understand the specific mechanisms involved and the long-term potential clinical impacts each can provide for improvement of sensorimotor outcomes.
Collapse
Affiliation(s)
| | | | - Neill Y. Li
- Department of Orthopaedic Surgery, Duke University, Durham, NC
| |
Collapse
|
6
|
Wu RT, Chuieng-Yi Lu J. Nerve Autograft: Preservation of a Lost Art. Hand Clin 2024; 40:347-356. [PMID: 38972679 DOI: 10.1016/j.hcl.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Nerve autografts involve the transplantation of a segment of the patient's own nerve to bridge a nerve gap. Autografts provide biological compatibility, support for axonal regeneration, and the ability to provide an anatomic scaffold for regrowth that other modalities may not match. Disadvantages of the autograft include donor site morbidity and the extra operative time needed to harvest the graft. Nevertheless, nerve autografts such as the sural nerve remain the gold standard in reconstructing nerve gaps, but a multitude of factors need to be favorable in order to garner reliable, consistent outcomes.
Collapse
Affiliation(s)
- Robin T Wu
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Johnny Chuieng-Yi Lu
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City, 333 Taiwan; Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Montgomery EK, Rask DMG, Wilson DJ, Plucknette BF, Sabbag CM. Microsurgical Techniques for Digital Nerve Injuries and Vascular Injuries. JBJS Essent Surg Tech 2024; 14:e23.00033. [PMID: 39280963 PMCID: PMC11392468 DOI: 10.2106/jbjs.st.23.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Background Tension-free end-to-end digital nerve repair or reconstruction under loupe or microscope magnification are surgical treatment options for lacerated digital nerves in patients with multiple injured digits, injuries to the border digits, or injuries to the thumb, with the goal of improved or restored sensation and a decreased risk of painful traumatic neuroma formation. Different techniques for primary repair have been described and include epineurial sutures, nerve "glues" including fibrin-based gels1,2, biologic or synthetic absorbable or nonabsorbable nerve wraps or conduits, or a combination of these materials. Nerve "glues" have demonstrated decreased initial gapping at the repair site3 and an increased tensile load to failure when utilized with a nerve wrap or conduit4,5. When there is a gap or defect in the nerve and primary repair is not feasible, nerve allograft and autograft provide similar results and are both better options than conduit reconstruction6. Concomitant or isolated digital vascular injuries may also be surgically treated with end-to-end repair in a dysvascular digit, with the goal of digit and function preservation. In the absence of complete circumferential injury or complete amputation, redundant or collateral flow may be present. Single digital artery injuries often do not need to be repaired because of the collateral flow from the other digital artery. Description Digital nerve and vascular injuries are often found in the context of traumatic wounds. In such cases, surgical exploration is often required, with possible surgical extension of the wounds to facilitate identification of the neurovascular bundles. The proximal and distal ends of the transected nerve and/or artery are identified, and the traumatized ends are incised sharply, maintaining as much length as possible to facilitate end-to-end repair, interposition of a graft, and the use of a conduit. The proximal and distal aspects of the nerve and/or artery are appropriately mobilized by dissecting or releasing any scar tissue or soft tissue that may be tethering the structure. The defect is measured in the natural resting position of the digit. Gentle flexion of the digit may be performed to facilitate a primary repair in the setting of very small defects. Primary repair or reconstruction is selected, and an 8-0 or 9-0 nonabsorbable monofilament suture is utilized to anastomose the appropriate structures under magnification with use of a single or double stitch6. A tubular nerve conduit is placed prior to epineurial suturing, or a nerve conduit wrap is applied circumferentially around the repair site and augmented with a fibrin glue. The wound is then irrigated and closed in a standard fashion, as determined by the presence of any soft-tissue or structural injury. Alternatives Alternatives to primary repair include the use of conduits or autologous or allogenic grafting. Factors that necessitate reconstruction include gapping and poor soft-tissue integrity, which can be related to the mechanism of injury. Alternatives to repair or reconstruction include treatment of the-soft tissue or structural injury without concomitant repair or reconstruction of the damaged digital nerves or vessels. Rationale Primary end-to-end repair and reconstruction of digital nerves increases a patient's likelihood of sensation recovery, and arterial repair can preserve a digit and avoid the need for amputation. Sensation in the digits is very important for fine motor skills and interaction with the environment, and it is particularly important for patients who rely on their hands for work and/or recreation. For these reasons, the digital nerves to the border digits, such as the ulnar aspect of the small finger, radial aspect of the index finger, and both digital nerves to the thumb, are given particular attention. Expected Outcomes Surgical intervention to repair or reconstruct the digital nerves increases the likelihood of recovering pre-injury sensation; however, the chance of complete recovery remains low. A systematic review of the outcomes of digital nerve repair in adults published in 2019 showed that the average percentage of patients who had undergone repair and reported a recovery to Highet grade 4 was 24% (range, 6% to 60%)8. The rate of adverse events was comparable between the operatively and nonoperatively treated patients, with complications including neuromas, hyperesthesia, and infection. Important Tips The use of a microvascular background material can provide better visualization of the proximal and distal ends while performing the repair.It is important to sharply guillotine the ends of the nerve to freshen up the laceration and provide healthy nerve ends for repair.Repair sutures need to be passed through the epineurium, with care taken not to pass through the nerve fascicles. Acronyms and Abbreviations OR = operating roomPIP = proximal interphalangealPT = prothrombin timePTT = partial thromboplastin time.
Collapse
Affiliation(s)
- Eric K Montgomery
- Orthopaedic Surgery Department, Brooke Army Medical Center, Joint Base San Antonio, San Antonio, Texas
| | - Dawn M G Rask
- Orthopaedic Surgery Department, Brooke Army Medical Center, Joint Base San Antonio, San Antonio, Texas
| | - David J Wilson
- Orthopaedic Surgery Department, Brooke Army Medical Center, Joint Base San Antonio, San Antonio, Texas
| | - Benjamin F Plucknette
- Orthopaedic Surgery Department, Brooke Army Medical Center, Joint Base San Antonio, San Antonio, Texas
| | - Casey M Sabbag
- Orthopaedic Surgery Department, Brooke Army Medical Center, Joint Base San Antonio, San Antonio, Texas
| |
Collapse
|
8
|
Zabbia G, Toia F, Coppola F, Cassata G, Cicero L, Giglia G, Puleio R, Cordova A. Nerve Regeneration after a Nerve Graft in a Rat Model: The Effectiveness of Fibrin Glue. J Pers Med 2024; 14:445. [PMID: 38793027 PMCID: PMC11121836 DOI: 10.3390/jpm14050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Simulating the post-traumatic continuity defect of small human peripheral nerves, we compared the effectiveness of fibrin glue with neurorrhaphy for nerve gap restoration. METHODS In twenty-four male Wistar rats, a fifteen mm defect in one sciatic nerve only was made and immediately repaired with an inverted polarity autograft. According to the used technique, rats were divided into Group A (Control), using traditional neurorrhaphy, and Group B (Study), using fibrine glue sealing; in total, 50% of rats were sacrificed at 16 weeks and 50% at 21 weeks. Before sacrifice, an assessment of motor function was done through Walking Track Analysis and an electroneurophysiological evaluation. After sacrifice, selected muscle mass indexes and the histology of the regenerated nerves were assessed. All data were evaluated by Student's t test for unpaired data. RESULTS No significant differences were found between the two groups, with only the exception of a relative improvement in the tibialis anterior muscle's number of motor units in the study group. CONCLUSION Despite the fact that the use of fibrin glue as a nerve sealant is not superior in terms of functional recovery, its effectiveness is comparable to that of microsurgical repair. Hence, the faster and technically easier glueing technique could deserve broader clinical application.
Collapse
Affiliation(s)
- Giovanni Zabbia
- Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.Z.); (F.T.); (A.C.)
| | - Francesca Toia
- Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.Z.); (F.T.); (A.C.)
| | - Federico Coppola
- Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.Z.); (F.T.); (A.C.)
| | - Giovanni Cassata
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (L.C.)
| | - Luca Cicero
- Centro Mediterraneo Ricerca e Training (Ce.Me.Ri.T), Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (L.C.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Section of Human Physiology, University of Palermo, 90127 Palermo, Italy;
| | - Roberto Puleio
- Laboratorio Istopatologia e Immunoistochimica, Dipartimento Ricerca Biotecnologica e Diagnostica Specialistica, Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy;
| | - Adriana Cordova
- Plastic and Reconstructive Surgery, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (G.Z.); (F.T.); (A.C.)
| |
Collapse
|
9
|
Bendale G, Smith M, Daniel L, deBruler I, Fernandes Gragnani M, Clement R, McNeice J, Griffitts F, Sonntag M, Griffis J, Clements I, Isaacs J. In Vivo Efficacy of a Novel, Sutureless Coaptation Device for Repairing Peripheral Nerve Defects. Tissue Eng Part A 2023; 29:461-470. [PMID: 37114683 PMCID: PMC10517328 DOI: 10.1089/ten.tea.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Although microsuture neurorrhaphy is the accepted clinical standard treatment for severed peripheral nerves, this technique requires microsurgical proficiency and still often fails to provide adequate nerve approximation for effective regeneration. Entubulation utilizing commercially available conduits may enhance the technical quality of the nerve coaptation and potentially provide a proregenerative microenvironment, but still requires precise suture placement. We developed a sutureless nerve coaptation device, Nerve Tape®, that utilizes Nitinol microhooks embedded within a porcine small intestinal submucosa backing. These tiny microhooks engage the outer epineurium of the nerve, while the backing wraps the coaptation to provide a stable, entubulated repair. In this study, we examine the impact of Nerve Tape on nerve tissue and axonal regeneration, compared with repairs performed with commercially available conduit-assisted or microsuture-only repairs. Eighteen male New Zealand white rabbits underwent a tibial nerve transection, immediately repaired with (1) Nerve Tape, (2) conduit plus anchoring sutures, or (3) four 9-0 nylon epineurial microsutures. At 16 weeks postinjury, the nerves were re-exposed to test sensory and motor nerve conduction, measure target muscle weight and girth, and perform nerve tissue histology. Nerve conduction velocities in the Nerve Tape group were significantly better than both the microsuture and conduit groups, while nerve compound action potential amplitudes in the Nerve Tape group were significantly better than the conduit group only. Gross morphology, muscle characteristics, and axon histomorphometry were not statistically different between the three repair groups. In the rabbit tibial nerve repair model, Nerve Tape offers similar regeneration efficacy compared with conduit-assisted and microsuture-only repairs, suggesting minimal impact of microhooks on nerve tissue.
Collapse
Affiliation(s)
- Geetanjali Bendale
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Matt Smith
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lida Daniel
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Isabelle deBruler
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | - Jonathan Isaacs
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Lin JS, Jain SA. Challenges in Nerve Repair and Reconstruction. Hand Clin 2023; 39:403-415. [PMID: 37453767 DOI: 10.1016/j.hcl.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Peripheral nerve injuries may substantially impair a patient's function and quality of life. Despite appropriate treatment, outcomes often remain poor. Direct repair remains the standard of care when repair is possible without excessive tension. For larger nerve defects, nerve autografting is the gold standard. However, a considerable challenge is donor site morbidity. Processed nerve allografts and conduits are other options, but evidence supporting their use is limited to smaller nerves and shorter gaps. Nerve transfer is another technique that has seen increasing popularity. The future of care may include novel biologics and pharmacologic therapy to enhance regeneration.
Collapse
Affiliation(s)
- James S Lin
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 241 West 11th Avenue, Suite 6081, Columbus, OH 43201, USA
| | - Sonu A Jain
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, 3rd Floor, Suite 3200, Columbus, OH 43212, USA.
| |
Collapse
|
11
|
Liu H, Li J, Xu W, Li Y, Yin L. Chinese herbal medicine Buyang Huanwu Decoction in treatment of peripheral nerve injury: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e34256. [PMID: 37478277 PMCID: PMC10662887 DOI: 10.1097/md.0000000000034256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNI) resulting from trauma can be severe and permanently disabling, approximately one-third of PNIs demonstrate incomplete recovery and poor functional restoration. However, despite extensive research on this aspect, complete functional recovery remains a challenge. In East Asian countries, Chinese herbal Buyang Huanwu Decoction (BHD) has been used to treat PNI for more than 200 years, and the studies of BHD to treat PNI have been increasing in recent years based on positive clinical outcomes. The purpose of this meta-analysis was to scientifically evaluate the safety and clinical efficacy of BHD in patients with PNI. METHOD A literature search was conducted on PubMed, EMBASE, Cochrane Library, CNKI, Wanfang, VIP, and Sinomed databases for randomized controlled clinical trials that evaluated the safety and effects of BHD alone or combination treatment on PNI. RESULTS A total of 14 studies involving 1415 participants were included in this study. Each trial did not show significant heterogeneity or publication bias. The results showed that significant improvements of the total clinical effective rate (odds ratio = 3.55; 95% confidence interval [CI] = [2.62, 4.81]; P < .0001), radial nerve function score (standardized mean difference [SMD] = 1.28; 95% CI = [1.09, 1.47]; P = .007), motor nerve conduction velocity (SMD = 1.59; 95% CI = [1.40, 1.78]; P < .0001), sensory nerve conduction velocity (SMD = 1.69; 95% CI = [1.34, 2.05]; P < .0001), and electromyography amplitude (SMD = 2.67; 95% CI = [1.27, 4.06]; P = .0002), and significantly reduce of the visual analog scale scores (SMD = -3.85; 95% CI = [-7.55, -0.15]; P = .04) in the BHD group compared with the control group. In addition, there were no serious and permanent adverse effects in the 2 groups, the difference was not significant (odds ratio = 1.00; 95% CI = [0.40, 2.50]; P = 1.00). CONCLUSION Current evidence suggests that BHD is an effective and safe treatment for PNI and could be treated as a complementary and alternative option with few side effects compared to a single treatment with neurotrophic drugs or electrical stimulation. However, considering the low methodological quality of the included studies, further rigorous studies are required.
Collapse
Affiliation(s)
- Hongwen Liu
- Department of Orthopaedics, Panzhihua Central Hospital, Panzhihua, China
| | - Jiao Li
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, China
| | - Wenhao Xu
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
12
|
Montazerian H, Hassani Najafabadi A, Davoodi E, Seyedmahmoud R, Haghniaz R, Baidya A, Gao W, Annabi N, Khademhosseini A, Weiss PS. Poly-Catecholic Functionalization of Biomolecules for Rapid Gelation, Robust Injectable Bioadhesion, and Near-Infrared Responsiveness. Adv Healthc Mater 2023; 12:e2203404. [PMID: 36843210 DOI: 10.1002/adhm.202203404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/28/2023]
Abstract
Mussel-inspired catechol-functionalization of degradable natural biomaterials has garnered significant interest as an approach to achieve bioadhesion for sutureless wound closure. However, conjugation capacity in standard coupling reactions, such as carbodiimide chemistry, is limited by low yield and lack of abundant conjugation sites. Here, a simple oxidative polymerization step before conjugation of catechol-carrying molecules (i.e., 3,4-dihydroxy-l-phenylalanine, l-DOPA) as a potential approach to amplify catechol function in bioadhesion of natural gelatin biomaterials is proposed. Solutions of gelatin modified with poly(l-DOPA) moieties (GelDOPA) are characterized by faster physical gelation and increased viscosity, providing better wound control on double-curved tissue surfaces compared to those of l-DOPA-conjugated gelatin. Physical hydrogels treated topically with low concentrations of NaIO4 solutions are crosslinked on-demand via through-thickness diffusion. Poly(l-DOPA) conjugates enhance crosslinking density compared to l-DOPA conjugated gelatin, resulting in lower swelling and enhanced cohesion in physiological conditions. Together with cohesion, more robust bioadhesion at body temperature is achieved by poly(l-DOPA) conjugates, exceeding those of commercial sealants. Further, poly(l-DOPA) motifs introduced photothermal responsiveness via near-infrared (NIR) irradiation for controlled drug release and potential applications in photothermal therapy. The above functionalities, along with antibacterial activity, render the proposed approach an effective biomaterial design strategy for wound closure applications.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | | | - Elham Davoodi
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Advances of Direct Peripheral Nerve Repair Techniques: Do We Already Have Enough Scientific Evidence? Indian J Orthop 2022; 57:189-202. [PMID: 36777121 PMCID: PMC9880092 DOI: 10.1007/s43465-022-00791-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Purpose To systematically review the evidence of direct peripheral nerve repair techniques and to determine any differences in outcomes that would guide rational treatment. Additionally, we compare the results and outcomes of these studies and find future directions for peripheral nerve repair techniques. Methods We searched PubMed, Virtual Health Library, and Embase databases to identify articles involving direct peripheral nerve techniques. We analyzed and compared the results and outcomes of these techniques. We also aimed to look for the differences in outcomes that would guide the current and future treatments. Results We identified 1390 articles, and 19 met our criteria with evidence ranging from level I to level IV. The nerve repair techniques included direct repair, epineural repair, fascicular repair, and group fascicular repair. These nerve techniques are based on the surgeons' personal experience. The results and the outcome of these studies were based on prognostic factors and not on surgical techniques. Few studies compared the surgical techniques and found no significant difference in nerve repair techniques. Conclusions Analyzing all direct peripheral nerve techniques and literature of all levels of evidence, our data show no significant difference between different suturing techniques. Currently, there is a lack of scientific evidence on the best direct peripheral nerve repair techniques. Therefore, we need more research to understand the rational treatment methods for peripheral nerve injuries. Level of evidence IV.
Collapse
|