1
|
Mukherjee S, Perveen S, Negi A, Sharma R. Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics. Tuberculosis (Edinb) 2023; 140:102340. [PMID: 37031646 PMCID: PMC10072981 DOI: 10.1016/j.tube.2023.102340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/12/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Tuberculosis has remained a global concern for public health affecting the lives of people for ages. Approximately 10 million people are affected by the disease and 1.5 million succumb to the disease worldwide annually. The COVID-19 pandemic has highlighted the role of early diagnosis to win the battle against such infectious diseases. Thus, advancement in the diagnostic approaches to provide early detection forms the foundation to eradicate and manage contagious diseases like tuberculosis. The conventional diagnostic strategies include microscopic examination, chest X-ray and tuberculin skin test. The limitations associated with sensitivity and specificity of these tests demands for exploring new techniques like probe-based assays, CRISPR-Cas and microRNA detection. The aim of the current review is to envisage the correlation between both the conventional and the newer approaches to enhance the specificity and sensitivity. A significant emphasis has been placed upon nanodiagnostic approaches manipulating quantum dots, magnetic nanoparticles, and biosensors for accurate diagnosis of latent, active and drug-resistant TB. Additionally, we would like to ponder upon a reliable method that is cost-effective, reproducible, require minimal infrastructure and provide point-of-care to the patients.
Collapse
Affiliation(s)
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Rudeeaneksin J, Phetsuksiri B, Nakajima C, Fukushima Y, Suthachai W, Tipkrua N, Suthum K, Jekloh N, Bunchoo S, Srisungngam S, Klayut W, Hamada S, Suzuki Y. Molecular Characterization of Mutations in Isoniazid- and Rifampicin-Resistant Mycobacterium tuberculosis Isolated in Thailand. Jpn J Infect Dis 2023; 76:39-45. [PMID: 36047179 DOI: 10.7883/yoken.jjid.2022.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The control of drug-resistant tuberculosis (TB) is a major challenge. The frequency and mutation characteristics indicate the efficiency of molecular tests for the rapid detection of TB drug resistance. This study examined the existence of katG and inhA mutations for isoniazid (INH) resistance and rpoB mutations for rifampicin (RFP) resistance. In total, 178 drug-resistant Mycobacterium tuberculosis (MTB) isolates were analyzed. Mutations in katG encoding and inhA regulatory regions were detected in 136/168 (81.0%) and 29/168 (17.3%), respectively, with the most prominent mutation of Ser315Thr substitution in katG in 126/168 (75.0%), and -15 C to T substitution in the regulatory region of the inhA (26/168; 15.5%). Two distinct katG mutations (Tyr337Cys, 1003InsG) were identified. Of 125 RFP-resistant isolates, 118 (94.4%) carried mutations affecting the 81-bp RFP resistance-determining region, with the most commonly affected codons 450, 445, and 435 identified in 74 (59.2%), 26 (20.8%), and 12 (9.6%) isolates, respectively. Genetic mutations were highly associated with phenotypic INH and RFP resistance, and the majority shared similarities with those reported in previous studies in Thailand and other Asian countries. These data are useful for guiding the use and improvement of molecular tests for TB drug resistance.
Collapse
Affiliation(s)
- Janisara Rudeeaneksin
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Benjawan Phetsuksiri
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| | - Worasak Suthachai
- The Office of Disease Prevention and Control Region 1, Department of Disease Control, Ministry of Public Health, Thailand
| | - Nattakan Tipkrua
- The Office of Disease Prevention and Control 5, Department of Disease Control, Ministry of Public Health, Thailand
| | - Krairerk Suthum
- The Office of Disease Prevention and Control 5, Department of Disease Control, Ministry of Public Health, Thailand
| | - Nasron Jekloh
- The Office of Disease Prevention and Control 12, Department of Disease Control, Ministry of Public Health, Thailand
| | - Supranee Bunchoo
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Sopa Srisungngam
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Wiphat Klayut
- Tuberculosis laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand
| | - Shigeyuki Hamada
- Section of Bacterial Infections, Thai-Japan Research Collaboration Center on Emerging and Re-emerging Infectious Diseases, Osaka University, Thailand
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Japan.,The Global Station for Zoonosis Control, Hokkaido University, Japan
| |
Collapse
|
3
|
Montoya JC, Malabad JCM, Ang CF, Reyes LT, Basilio RP, Lim DR, Amarillo MLE, Ama MCG, Phelan JE, Hibberd ML, Clark TG. Molecular characterization of drug-resistant Mycobacterium tuberculosis among Filipino patients derived from the national tuberculosis prevalence survey Philippines 2016. Tuberculosis (Edinb) 2022; 135:102211. [DOI: 10.1016/j.tube.2022.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
4
|
Swain SS, Rout SS, Sahoo A, Oyedemi SO, Hussain T. Antituberculosis, antioxidant and cytotoxicity profiles of quercetin: a systematic and cost-effective in silico and in vitro approach. Nat Prod Res 2021; 36:4763-4767. [PMID: 34854322 DOI: 10.1080/14786419.2021.2008387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ineffectiveness and the slowdown of newer anti-TB drug approval rates directly indicate searching for potential alternative agents. However, validation of isolated phytochemicals through hit-and-trial experiments is more expensive and time-consuming. Simultaneously, cost-effective computational tools can recognize most potential candidates at an initial stage. The present study selected seven plant-derived polyphenols, then verified anti-TB and drug-ability profiles using advanced computational tools before the experimental study. Among all, the quercetin showed a potential docking-score within -8 to -11 kcal/mol than the standard isoniazid and ofloxacin, -5 to -10 kcal/mol. Additionally, quercetin exhibited a higher drug-ability score of 0.53 than isoniazid 0.19. Further, quercetin exhibited the minimum inhibitory concentration at 6 and 8 μg/mL, while ofloxacin showed at 2 μg/mL against InhA, and katG mutated Mtb-strains, respectively. Parallelly, quercetin showed promising free-radical-scavenging activity from nitric-oxide assay at IC50 = 14.92 µg/mL, and lesser-cytotoxicity from cultured HepG2 cell lines at IC50 = 159 µg/mL, respectively.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sunil S Rout
- National Reference Laboratory for Tuberculosis, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sunday O Oyedemi
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Monde N, Zulu M, Tembo M, Handema R, Munyeme M, Malama S. Drug Resistant Tuberculosis in the Northern Region of Zambia: A Retrospective Study. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.735028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundZambia like many countries in sub-Saharan Africa is affected with drug resistant tuberculosis. However, the drug resistant tuberculosis situation over the years has not been described in various regions of the country. Consequently, this study aims to determine the drug resistant tuberculosis burden in northern regions of Zambia over a four-year period based on data generated from a Regional Tuberculosis Reference Laboratory.MethodTwo hundred and thirty two (232) Tuberculosis Drug Susceptibility Testing results over a four-year period (2016-2019) were reviewed. Data was collected from tuberculosis registers and patient request forms and entered into a pre-tested standardized checklist and later entered in Excel Computer software. Double blinded checking was done by two independent data clerks to minimize duplication of cases. Cleaned data was then imported in R programme for analysis. Bivariant and descriptive statistics were performed and reported.ResultsOf 232 Drug Susceptibility Testing results, 90.9% were drug resistant TB while 9% were drug susceptible. Fifty three percent (53%) of these were multi-drug resistant Tuberculosis and 32% were confirmed as Rifampicin Mono-resistance. Only 1.7% of the Multi-drug resistant Tuberculosis patients were Pre-extensively drug-resistant Tuberculosis. Copperbelt province had the largest proportion (46.0%) of multi-drug resistant tuberculosis patients followed by Luapula (8.1%) and North-Western (4.7%) provinces. In new and previously treated patients, the proportion of Multi-drug resistant tuberculosis was 71.8% and 28.7% respectively. History of previous anti-tuberculosis treatment and treatment failure were associated with multi-drug resistance TB.Conclusion and RecommendationThis study has shown a small increase in the proportions of drug resistant tuberculosis cases over the four years under review with high rates being recorded on the Copperbelt Province. Previous treatment to first line TB treatment and treatment failure were associated with development of Multi-drug resistance. We therefore recommend strengthened routine laboratory surveillance and improved case management of multi-drug resistant tuberculosis patients in the region.
Collapse
|
6
|
Borah P, Deb PK, Venugopala KN, Al-Shar'i NA, Singh V, Deka S, Srivastava A, Tiwari V, Mailavaram RP. Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies. Curr Top Med Chem 2021; 21:547-570. [PMID: 33319660 DOI: 10.2174/1568026621999201211200447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pran K Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Amavya Srivastava
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| |
Collapse
|
7
|
Systematic Review of Mutations Associated with Isoniazid Resistance Points to Continuing Evolution and Subsequent Evasion of Molecular Detection, and Potential for Emergence of Multidrug Resistance in Clinical Strains of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.02091-20. [PMID: 33361298 DOI: 10.1128/aac.02091-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/13/2020] [Indexed: 01/24/2023] Open
Abstract
Molecular testing is rapidly becoming an integral component of global tuberculosis (TB) control. Uncommon mechanisms of resistance escape detection by these platforms and undermine our ability to contain outbreaks. This article is a systematic review of published articles that reported isoniazid (INH) resistance-conferring mutations between September 2013 and December 2019. The genes katG, inhA, and fabG1, and the intergenic region oxyR'-ahpC were considered in this review. Fifty-two articles were included that described 9,306 clinical isolates (5,804 INH resistant [INHr] and 3,502 INH susceptible [INHs]) from 31 countries. The three most frequently mutated loci continue to be locus 315 of katG (katG315; n = 4,271), locus -15 of inhA (inhA-15; n = 787), and locus -8 of inhA (inhA-8; 106). However, the diagnostic value of inhA-8 is far lower than previously thought, as it only appears in 25 (0.4%) of the INHr isolates lacking the first two mutations. I catalogued 45 new loci (29 katG, nine inhA, and seven ahpC) associated with INH resistance and identified 59 loci (common to this and previous reviews) as a reliable basis for molecular diagnostics. Including all observed mutations provides a cumulative sensitivity of 85.6%. In 14.4% of resistant isolates, no mechanism of resistance was detected, making them likely to escape molecular detection, and in the case of INH monoresistance, likely to convert to multidrug-resistant TB (MDR-TB). Integrating the information cataloged in this study into current diagnostic tools is essential for combating the emergence of MDR-TB, and its exclusion can lead to an unintended selection against common mechanisms and to diversifying evolution. Observation of many low-frequency resistance-conferring mutations points to an advantage of whole-genome sequencing (WGS) for diagnostics. Finally, I provide five recommendations for future diagnostic platforms.
Collapse
|
8
|
Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2020; 9:1651-1663. [PMID: 32573374 PMCID: PMC7473167 DOI: 10.1080/22221751.2020.1785334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, drug-resistant tuberculosis (DR-TB) and co-infected tuberculosis (CI-TB) strains are the leading cause for the enhancement of long-term morbidity and unpredicted mortality rates from this ghoulish acid fast-bacterium infection, globally. Unfortunately, the lack of/ample lethargic towards the development of compelling anti-TB regimens with a large-scale prevalence rate is a great challenge towards control of the pandemic situation. Indeed, the recent improvement in genomic studies for early diagnosis and understanding the mechanisms of drug resistance, as well as the identification of newer drug targets is quite remarkable and promising. Mainly, identification of such genetic factors, chromosomal mutations and associated pathways gives new ray of hope in current anti-TB drug discovery. This focused review provides molecular insights into the updated drug resistance mechanisms with encoded bacilli genetic factors as a novel target and potential source of development with screened-out newer anti-TB agents towards the control of MDR-TB soon.
Collapse
Affiliation(s)
- Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Divakar Sharma
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
9
|
Rapid detection of rifampicin-resistant Mycobacterium tuberculosis, based on isothermal DNA amplification and DNA chromatography. J Microbiol Methods 2020; 177:106062. [PMID: 32950563 DOI: 10.1016/j.mimet.2020.106062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
Rapid and easy detection of nucleotide point mutations in bacterial pathogens associated with drug resistance is essential for the proper use of antimicrobials. Here, we developed a rapid and simple method for the detection of mutations using Loop-mediated isothermal amplification (LAMP) combined with the single-tag hybridization (STH) chromatographic printed array strips (PAS) method. This procedure is able to detect four mutations (C1349 T, A1295C, G1303 T, A1304 T) in Rifampicin Resistance Determining Region (RRDR) of rifampicin-resistant Mycobacterium tuberculosis (RR-TB), simultaneously. LAMP reactions contained a LAMP primer and eight allele-specific primers for each mutation. The allele-specific primers products were detected by nucleic acid chromatography using PAS. Four detection lines were detected there, one of which was detected at different positions depend on the wild type and the mutant type. We carried out the four mutations detection using 31 genomic DNA (2 A1295T, 1 G1303 T, 6 A1304 T, 22 C1349 T) from clinical isolate. The mutations have been confirmed by sequence analysis. The detection results were completely consistent with the sequence analysis. In the present study, four mutations could be detected, but only 60% of RR-TB could be detected with these four. It is expected that the detection rate will increase by adding more mutant primers. The combined LAMP and STH chromatographic PAS method is a simple and rapid method for detecting point mutations in clinical isolates as a point-of-care testing (POCT) technique. In addition, it does not require special equipment and can meet the demand in areas where drug-resistant bacteria are endemic, such as developing countries.
Collapse
|
10
|
Solo ES, Nakajima C, Kaile T, Bwalya P, Mbulo G, Fukushima Y, Chila S, Kapata N, Shah Y, Suzuki Y. Mutations in rpoB and katG genes and the inhA operon in multidrug-resistant Mycobacterium tuberculosis isolates from Zambia. J Glob Antimicrob Resist 2020; 22:302-307. [PMID: 32169686 DOI: 10.1016/j.jgar.2020.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES It is established that resistance to rifampicin (RIF) in 90% of RIF-resistant Mycobacterium tuberculosis isolates is attributable to point mutations in the rpoB gene, whilst 50-95% of M. tuberculosis resistance to isoniazid (INH) is caused by mutations in the katG gene. However, the patterns and frequencies of mutations vary by geographical region. In Zambia, the genetic mechanisms of resistance of M. tuberculosis to RIF and INH were unreported before this study. METHODS Using gene sequencing, the rpoB, katG and inhA genes of 99 multidrug-resistant M. tuberculosis (MDR-TB) and 49 pan-susceptible M. tuberculosis isolates stored at a tuberculosis reference laboratory from 2013 to 2016 were analysed and were compared with published profiles from other African countries. RESULTS Of the 99 MDR-TB isolates, 95 (96.0%) carried mutations in both rpoB and katG. No mutations were detected among the pan-susceptible isolates. The most common mutations among RIF- and INH-resistant isolates were in codon 531 of the rpoB gene (55.6%; 55/99) and codon 315 of the katG gene (94.9%; 94/99), respectively. Distinctly, katG mutations were predominantly high among Zambian isolates (96.0%) compared with other countries in the region. CONCLUSION Resistance-associated mutations to RIF and INH circulating in Zambia are similar to those reported globally, therefore these data validate the applicability of molecular diagnostic tools in Zambia. However, katG mutations were predominantly high among M. tuberculosis isolates in this study compared with other regional countries and might distinguish cross-boundary transmission of MDR-TB from other African nations.
Collapse
Affiliation(s)
- Eddie S Solo
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, The Global Station for Zoonosis Control, Sapporo, Japan
| | - Trevor Kaile
- University of Zambia, School of Medicine, Lusaka, Zambia
| | - Precious Bwalya
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia; Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Grace Mbulo
- Department of Pathology and Microbiology, University Teaching Hospital, Ministry of Health, Lusaka, Zambia
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | | | | | - Yogendra Shah
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, The Global Station for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
11
|
Charoenpak R, Santimaleeworagun W, Suwanpimolkul G, Manosuthi W, Kongsanan P, Petsong S, Puttilerpong C. Association Between the Phenotype and Genotype of Isoniazid Resistance Among Mycobacterium tuberculosis Isolates in Thailand. Infect Drug Resist 2020; 13:627-634. [PMID: 32158238 PMCID: PMC7047971 DOI: 10.2147/idr.s242261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Purpose The emergence of isoniazid-resistant tuberculosis (HR-TB) is a global public health problem, causing treatment failure and high mortality rates. This study aimed to determine the minimal inhibitory concentration (MIC) of isoniazid and detect the gene mutation in HR-TB and any association between the level of isoniazid resistance and gene mutation. Methods We collected 74 clinical HR-TB isolates from two tertiary-care centers in Thailand. MICs were established using broth macrodilution. A line probe assay (LPA) was used to detect gene mutations that confer resistance to isoniazid, rifampicin, aminoglycosides, and fluoroquinolones. Results Sixty-one (82.4%) isolates were monoresistant to isoniazid and 44 (72.1%) were highly resistant to isoniazid. From the clinical isolates, the range of isoniazid MICs was 0.4–16 μg/mL. The katG S315T gene mutation was the prominent mutation in both isoniazid-monoresistant TB (70.5%) and multidrug-resistant TB (72.7%) isolates. The positive predictive value (PPV) of katG was 100% in detecting high levels of isoniazid resistance. The PPV of the inhA mutation was 93.8% in detecting low levels of isoniazid resistance. Five isolates (6.8%) exhibited low-level phenotypic resistance, whereas an LPA failed to detect an isoniazid gene mutation. Our study found one HR-TB isolate with a gyrA fluoroquinolone-resistant gene mutation. Conclusion Most HR-TB isolates had high isoniazid-resistance levels associated with the katG gene mutation. High-dose isoniazid should be used with caution in patients with HR-TB. Early detection of drug resistance by genotypic assay can help determine an appropriate regimen.
Collapse
Affiliation(s)
| | | | - Gompol Suwanpimolkul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Tuberculosis Research Unit, Chulalongkorn University, Bangkok, Thailand.,Emerging Infectious Diseases Clinical Center, Thai Red Cross, Bangkok, Thailand
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Paweena Kongsanan
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chankit Puttilerpong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Genotypic Characterization of katG, inhA, and ahpC in Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates in Shanghai, China. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.95713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Retrospective Analysis of Archived Pyrazinamide Resistant Mycobacterium tuberculosis Complex Isolates from Uganda-Evidence of Interspecies Transmission. Microorganisms 2019; 7:microorganisms7080221. [PMID: 31362370 PMCID: PMC6723201 DOI: 10.3390/microorganisms7080221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of Mycobacterium bovis to the proportion of tuberculosis cases in humans is unknown. A retrospective study was undertaken on archived Mycobacterium tuberculosis complex (MTBC) isolates from a reference laboratory in Uganda to identify the prevalence of human M. bovis infection. A total of 5676 isolates maintained in this repository were queried and 136 isolates were identified as pyrazinamide resistant, a hallmark phenotype of M. bovis. Of these, 1.5% (n = 2) isolates were confirmed as M. bovis by using regions of difference PCR analysis. The overall size of whole genome sequences (WGSs) of these two M. bovis isolates were ~4.272 Mb (M. bovis Bz_31150 isolated from a captive chimpanzee) and 4.17 Mb (M. bovis B2_7505 from a human patient), respectively. Alignment of these genomes against 15 MTBC genome sequences revealed 7248 single nucleotide polumorphisms (SNPs). Theses SNPs were used for phylogenetic analysis that indicated a strong relationship between M. bovis and the chimpanzee isolate (Bz_31150) while the other M. bovis genome from the human patient (B2_7505) analyzed did not cluster with any M. bovis or M. tuberculosis strains. WGS analysis also revealed multidrug resistance genotypes; these genomes revealed pncA mutations at positions H57D in Bz_31150 and B2_7505. Phenotypically, B2_7505 was an extensively drug-resistant strain and this was confirmed by the presence of mutations in the major resistance-associated proteins for all anti-tuberculosis (TB) drugs, including isoniazid (KatG (S315T) and InhA (S94A)), fluoroquinolones (S95T), streptomycin (rrs (R309C)), and rifampin (D435Y, a rare but disputed mutation in rpoB). The presence of these mutations exclusively in the human M. bovis isolate suggested that these occurred after transmission from cattle. Genome analysis in this study identified M. bovis in humans and great apes, suggesting possible transmission from domesticated ruminants in the area due to a dynamic and changing interface, which has created opportunity for exposure and transmission.
Collapse
|
14
|
Bouziane F, Allem R, Sebaihia M, Kumanski S, Mougari F, Sougakoff W, Raskine L, Yala D, Cambau E. First genetic characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from Algeria. J Glob Antimicrob Resist 2019; 19:301-307. [PMID: 31100498 DOI: 10.1016/j.jgar.2019.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES To characterise the genotypes of multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) isolated in Algeria, where there is a low MDR-MTB incidence rate. METHODS Ten MDR isolates and one resistant to isoniazid were investigated by PCR-Sanger sequencing for 10 loci involved in resistance. Amplicon-based next generation sequencing (NGS) of 15 loci was additionally performed on isolates harbouring novel mutations. RESULTS Sanger and amplicon-NGS provided the same results as with GenoType kits. Mutations known to be associated with resistance were described for most isolates: rpoB S531L in seven of 10 rifampicin-R MTB isolates, katG S315T in nine of 11 isoniazid-R, and promoter inhA c-15t in three of 11, embB M306V or M306I in two of two ethambutol-R, rpsL K43R in four of eight or rrs a514c associated with gidB L16R in streptomycin-R, gyrA A90V in the ofloxacin-R pre-XDR isolate. New and rare mutations were also described in rpoB (deletion 512-513-514), katG (S315R, M126I/ R496L), gidB (V124G, E92A, V139A, G37V), and gyrA (P8A). Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profiles were similar for three isolates (lineage Cameroon), indicating a possible clonal diffusion in epidemiologically unrelated patients. CONCLUSIONS Resistant MTB isolates in Algeria harbour resistance genotypes similar to other countries, but some rare patterns may result from selection and transmission processes inherent to the country.
Collapse
Affiliation(s)
- Feriel Bouziane
- Laboratoire de Biologie Moléculaire, Génomique et Bio-Informatique-Département de Biologie, Faculté des Sciences, Université Hassiba Ben Bouali, Chlef, Algeria
| | - Rachida Allem
- Laboratoire de Bio Ressources Naturelles, Département de Biologie, Faculté des Sciences, Université Hassiba Ben Bouali, Chlef, Algeria
| | - Mohammed Sebaihia
- Laboratoire de Biologie Moléculaire, Génomique et Bio-Informatique-Département de Biologie, Faculté des Sciences, Université Hassiba Ben Bouali, Chlef, Algeria
| | - Sylvain Kumanski
- AP-HP, Laboratoire de Bactériologie, Centre National de Référence Des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, GH Lariboisière-Fernand Widal, Paris, France
| | - Faiza Mougari
- AP-HP, Laboratoire de Bactériologie, Centre National de Référence Des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, GH Lariboisière-Fernand Widal, Paris, France; Iame, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Wladimir Sougakoff
- AP-HP, Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, GH Pitié-Salpêtrière, Paris, France
| | - Laurent Raskine
- AP-HP, Laboratoire de Bactériologie, Centre National de Référence Des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, GH Lariboisière-Fernand Widal, Paris, France
| | - Djamel Yala
- Laboratoire National de Référence pour la Tuberculose et Mycobactéries, Institut Pasteur, Alger, Algeria
| | - Emmanuelle Cambau
- AP-HP, Laboratoire de Bactériologie, Centre National de Référence Des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, GH Lariboisière-Fernand Widal, Paris, France; Iame, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
15
|
Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, Ld Siqueira V, Pavan FR. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol 2019; 14:185-194. [PMID: 30648892 DOI: 10.2217/fmb-2018-0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate modulatory effect of verapamil (VP) in rifampicin (RIF) activity and its effect in efflux pumps (EPs) transcript levels in Mycobacterium tuberculosis. MATERIALS & METHODS RIF and VP minimal inhibitory concentration, combinatory effect and detection of mutations were determined in 16 isolates. EPs transcript levels were determined in four isolates by real-time PCR after exposure to drugs. RESULTS VP showed good combinatory effect among RIF-resistant isolates. This effect was also observed in the relative transcript levels of EPs, mainly after 72 h of exposure, depending on the EP gene, genotype and the resistance profile of the isolate. CONCLUSION Additional regulatory mechanisms in the EP activities, as well as, interactions with other drug-specific resistance mechanisms need further investigation in M. tuberculosis.
Collapse
Affiliation(s)
- Katiany R Caleffi-Ferracioli
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - João Vp de Souza
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Letícia S Murase
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Pedro H Canezin
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, Brazil
| | - Fernando R Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Paulista State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
16
|
Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8:114. [PMID: 29755957 PMCID: PMC5932416 DOI: 10.3389/fcimb.2018.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wing W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Shah Y, Maharjan B, Thapa J, Poudel A, Diab HM, Pandey BD, Solo ES, Isoda N, Suzuki Y, Nakajima C. High diversity of multidrug-resistant Mycobacterium tuberculosis Central Asian Strain isolates in Nepal. Int J Infect Dis 2017. [PMID: 28627432 DOI: 10.1016/j.ijid.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) poses a major public health problem in Nepal. Although it has been reported as one of the dominant genotypes of MTB in Nepal, little information on the Central Asian Strain (CAS) family is available, especially isolates related to multidrug resistance (MDR) cases. This study aimed to elucidate the genetic and epidemiological characteristics of MDR CAS isolates in Nepal. METHODS A total of 145 MDR CAS isolates collected in Nepal from 2008 to 2013 were characterized by spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, and drug resistance-associated gene sequencing. RESULTS Spoligotyping analysis showed CAS1_Delhi SIT26 as predominant (60/145, 41.4%). However, by combining spoligotyping and MIRU-VNTR typing, it was possible to successfully discriminate all 145 isolates into 116 different types including 18 clusters with 47 isolates (clustering rate 32.4%). About a half of these clustered isolates shared the same genetic and geographical characteristics with other isolates in each cluster, and some of them shared rare point mutations in rpoB that are thought to be associated with rifampicin resistance. CONCLUSIONS Although the data obtained show little evidence that large outbreaks of MDR-TB caused by the CAS family have occurred in Nepal, they strongly suggest several MDR-MTB transmission cases.
Collapse
Affiliation(s)
- Yogendra Shah
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Bhagwan Maharjan
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; German Nepal Tuberculosis Project, Nepal Anti-Tuberculosis Association/GENETUP, Kalimati, Kathmandu, Nepal
| | - Jeewan Thapa
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ajay Poudel
- Chitwan Medical College Teaching Hospital, Department of Microbiology, Bharatpur, Chitwan, Nepal
| | - Hassan Mahmoud Diab
- Department of Animal Hygiene, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Basu Dev Pandey
- Leprosy Control Division, Department of Health Services, Ministry of Health, Kathmandu, Nepal; Everest International Clinic and Research Center, Kathmandu, Nepal
| | - Eddie S Solo
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Norikazu Isoda
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan.
| |
Collapse
|
18
|
Islam MM, Hameed HMA, Mugweru J, Chhotaray C, Wang C, Tan Y, Liu J, Li X, Tan S, Ojima I, Yew WW, Nuermberger E, Lamichhane G, Zhang T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 2016; 44:21-37. [PMID: 28117224 DOI: 10.1016/j.jgg.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/26/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Chemical Biology and Drug Discovery, Stony Brook University-State University of New York, Stony Brook, NY 11794-3400, USA
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University-State University of New York, Stony Brook, NY 11794-3400, USA
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231-1002, USA
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231-1002, USA
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|