1
|
pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11060773. [PMID: 35740179 PMCID: PMC9219673 DOI: 10.3390/antibiotics11060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa infection is considered a high-risk nosocomial infection and is very difficult to eradicate because of its tolerance to antibiotic treatment. A new compound, autoinducer analog-1 (AIA-1), has been demonstrated to reduce antibiotic tolerance, but its mechanisms remain unknown. This study aimed to investigate the mechanisms of AIA-1 in the antibiotic tolerance of P. aeruginosa. A transposon mutant library was constructed using miniTn5pro, and screening was performed to isolate high tolerant mutants upon exposure to biapenem and AIA-1. We constructed a deletion mutant and complementation strain of the genes detected in transposon insertion site determination, pruR and PA0066-65-64, and performed killing assays with antibiotics and AIA-1. Gene expression upon exposure to biapenem and AIA-1 and their relationship to stress response genes were analyzed. High antibiotic tolerance was observed in Tn5-pruR and Tn5-PA0065 transposon mutants and their deletion mutants, ΔpruR and ΔPA0066-65-64. Complemented strains of pruR and PA0066-65-64 with their respective deletion mutants exhibited suppressed antibiotic tolerance. It was determined that deletion of PA0066-65-64 increased rpoS expression, and PA0066-65-64 affects antibiotic tolerance via the rpoS pathway. Additionally, antibiotics and AIA-1 were found to inhibit pruR and PA0066-65-64. This study proposed that pruR and PA0066-65-64 are members of the antibiotic tolerance suppressors.
Collapse
|
2
|
Wang H, Lin-Zhao Z, Jie-An D, Lin-Wang J, Tong-Yang B, Huan-Kang Y, Xing-Zhang D, Chao-Song H, Feng-Shan X, Dong-Qian A. The lip gene contributes to the virulence of Aeromonas veronii strain TH0426. Microb Pathog 2022; 167:105566. [PMID: 35568092 DOI: 10.1016/j.micpath.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Aeromonas veronii (A. veronii) is a pathogen that can infect aquatic organisms and mammals and has caused irrecoverable economic losses to the aquaculture industry. The results of an epidemiological investigation showed that the number of cases of A. veronii have increased gradually in recent years, and its drug resistance and virulence has shown an upward trend. In this study, we constructed an A. veronii mutant strain Δlip, by homologous recombination and studied its function. The results showed that there was no significant difference in the biofilm formation ability between the Δlip and the wild-type strain, but the toxicity of the Δlip to EPC cells and its ability to adhere to EPC cells were significantly reduced. The LD50 value of the Δlip to zebrafish was 7.40-fold higher than that of the wild-type strain. In addition, after 24 h and 72 h, the bacterial loads of the Δlip in the organs of crucian carp were significantly lower than those in the wild-type strain. In conclusion, the mutant strain Δlip led to a decrease in the adhesion and virulence of the wild-type strain, which lays a foundation to further understand lip gene function and the pathogenic mechanism of A. veronii.
Collapse
Affiliation(s)
- Hong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ze Lin-Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ding Jie-An
- Institute of Animal and Veterinary Medicine,Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Jing Lin-Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Bin Tong-Yang
- College of Life Science, Changchun Sci-Tech University, Changchun, Jilin, 130600, China
| | - Yuan Huan-Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong Xing-Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hai Chao-Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao Feng-Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai Dong-Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Abe M, Murakami K, Hiroshima Y, Amoh T, Sebe M, Kataoka K, Fujii H. Autoinducer Analogs Can Provide Bactericidal Activity to Macrolides in Pseudomonas aeruginosa through Antibiotic Tolerance Reduction. Antibiotics (Basel) 2021; 11:antibiotics11010010. [PMID: 35052885 PMCID: PMC8772842 DOI: 10.3390/antibiotics11010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Macrolide antibiotics are used in treating Pseudomonas aeruginosa chronic biofilm infections despite their unsatisfactory antibacterial activity, because they display several special activities, such as modulation of the bacterial quorum sensing and immunomodulatory effects on the host. In this study, we investigated the effects of the newly synthesized P. aeruginosa quorum-sensing autoinducer analogs (AIA-1, -2) on the activity of azithromycin and clarithromycin against P. aeruginosa. In the killing assay of planktonic cells, AIA-1 and -2 enhanced the bactericidal ability of macrolides against P. aeruginosa PAO1; however, they did not affect the minimum inhibitory concentrations of macrolides. In addition, AIA-1 and -2 considerably improved the killing activity of azithromycin and clarithromycin in biofilm cells. The results indicated that AIA-1 and -2 could affect antibiotic tolerance. Moreover, the results of hydrocarbon adherence and cell membrane permeability assays suggested that AIA-1 and -2 changed bacterial cell surface hydrophobicity and accelerated the outer membrane permeability of the hydrophobic antibiotics such as azithromycin and clarithromycin. Our study demonstrated that the new combination therapy of macrolides and AIA-1 and -2 may improve the therapeutic efficacy of macrolides in the treatment of chronic P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Mizuki Abe
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
- Department of Microbiology and Genetic Analysis, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan;
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan;
- Correspondence: ; Tel.: +81-86-462-1111 (ext. 55074); Fax: +81-86-463-3508
| | - Yuka Hiroshima
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
| | - Takashi Amoh
- Department of Dental Hygiene, Mejiro University College, Tokyo 161-8539, Japan;
| | - Mayu Sebe
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan;
| | - Keiko Kataoka
- Department of Microbiology and Genetic Analysis, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan;
| | - Hideki Fujii
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (M.A.); (Y.H.); (H.F.)
| |
Collapse
|
4
|
Li Y, Yang B, Tian J, Sun W, Wang G, Qian A, Wang C, Shan X, Kang Y. An iTRAQ-Based Comparative Proteomics Analysis of the Biofilm and Planktonic States of Aeromonas veronii TH0426. Int J Mol Sci 2020; 21:ijms21041450. [PMID: 32093365 PMCID: PMC7073075 DOI: 10.3390/ijms21041450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Aeromonas veronii is a virulent fish pathogen that causes extensive economic losses in the aquaculture industry worldwide. In this study, a virulent strain of A. veronii TH0426 was used to establish an in vitro biofilm model. The results show that the biofilm-forming abilities of A. veronii TH0426 were similar in different media, peaking under conditions of 20 °C and pH 6. Further, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods were used to compare the differential expression of A. veronii between the biofilm and planktonic cells. The results show alterations in 277 proteins, with 130 being upregulated and 147 downregulated. Pathway analysis and GO (Gene Ontology) annotations indicated that these proteins are mainly involved in metabolic pathways and the biosynthesis of secondary metabolites and antibiotics. These proteins are the main factors affecting the adaptability of A. veronii to its external environment. MRM (multiple reaction 27 monitoring) and qPCR (qPCR) were used to verify the differential proteins of the selected A. veronii. This is the first report on the biofilm and planktonic cells of A. veronii, thus contributing to studying the infection and pathogenesis of A. veronii.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Bintong Yang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
- College of Life Science, Changchun Sci-Tech University, Changchun 130118, China
| | - Jiaxin Tian
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Wuwen Sun
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Guiqin Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Aidong Qian
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Chunfeng Wang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
| | - Xiaofeng Shan
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
- Correspondence: (X.-F.S.); (Y.-H.K.); Tel.: +86-13504404077 (X.S.); +86-0431-84533426 (Y.K.)
| | - Yuanhuan Kang
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (B.Y.); (J.T.); (W.S.); (G.W.); (A.Q.); (C.W.)
- Correspondence: (X.-F.S.); (Y.-H.K.); Tel.: +86-13504404077 (X.S.); +86-0431-84533426 (Y.K.)
| |
Collapse
|
5
|
Machreki Y, Kouidhi B, Machreki S, Chaieb K, Sáenz Y. Analysis of a long term starved Pseudomonas aeruginosa ATCC27853 in seawater microcosms. Microb Pathog 2019; 134:103595. [PMID: 31201902 DOI: 10.1016/j.micpath.2019.103595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
The persistence of pathogenic bacteria in the marine environment has been thoroughly investigated. The potential threat that these microorganisms pose to public health in recreational waters has always been a concern. In this study, the persistence and the response of Pseudomonas aeruginosa ATCC27853 to starvation and osmotic stress were studied after its incubation in sterilized seawater during 12 months. Three different colonial variants were isolated: A7 after one month, and A81 and A82 after 8 months of incubation period. The incubation effect on the bacterial phenotype and genotype were studied by analyzing modifications in morphology, antibiotic and metal resistance, molecular typing (PFGE and MLST), pigment production and virulence factors. The starved variants showed three different colony forms, but an indistinguishable PFGE pattern and belonged to ST155, as P. aeruginosa ATCC27853. The starved variants maintained the susceptibility to the 13 tested antibiotics, with the exception of the imipenem-resistant A82 strain, which also showed a small colony variant phenotype and the highest values of tolerance to the CuSO4 + NaCl combination. Significant differences were detected in the pigment production, the elastase activity and cytotoxic potential of the starved isolates in comparison to P. aeruginosa ATCC27853. Long-term exposure to stress, such as the incubation in seawater, was shown to induce different responses in P. aeruginosa, including virulent and resistant phenotypes.
Collapse
Affiliation(s)
- Yasmine Machreki
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Bochra Kouidhi
- Medical Laboratory Department, College of Applied Medical Sciences, Yanbu, Taibah University, Saudi Arabia.
| | - Sawsen Machreki
- Emergency Department, Hospital of Al Imam Abdulrahman Al Faisal, Riyadh, Saudi Arabia
| | - Kamel Chaieb
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Tunisia
| | - Yolanda Sáenz
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|