1
|
Acín P, Luque S, Sorli L, Grau S. Therapeutic drug monitoring of colistin in plasma and cerebrospinal fluid in meningoventriculitis caused by a carbapenem-resistant Enterobacter cloacae. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:277-278. [PMID: 35577447 DOI: 10.1016/j.eimce.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 06/15/2023]
Affiliation(s)
- Pablo Acín
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - Luisa Sorli
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Diseases Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
3
|
Acín P, Luque S, Sorli L, Grau S. Therapeutic drug monitoring of colistin in plasma and cerebrospinal fluid in meningoventriculitis caused by a carbapenem-resistant Enterobacter cloacae. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00076-8. [PMID: 33867186 DOI: 10.1016/j.eimc.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Pablo Acín
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - Luisa Sorli
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Diseases Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Wei P, Wang P, Li B, Gu H, Liu J, Wang Z. Divergence and Convergence of Cerebral Ischemia Pathways Profile Deciphers Differential Pure Additive and Synergistic Mechanisms. Front Pharmacol 2020; 11:80. [PMID: 32161541 PMCID: PMC7053362 DOI: 10.3389/fphar.2020.00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Aim The variable mechanisms on additive and synergistic effects of jasminoidin (JA)-Baicalin (BA) combination and JA-ursodeoxycholic acid (UA) combination in treating cerebral ischemia are not completely understood. In this study, we explored the differential pure mechanisms of additive and synergistic effects based on pathway analysis that excluded ineffective interference. Methods The MCAO mice were divided into eight groups: sham, vehicle, BA, JA, UA, Concha Margaritifera (CM), BA-JA combination (BJ), and JA-UA combination (JU). The additive and synergistic effects of combination groups were identified by cerebral infarct volume calculation. The differentially expressed genes based on a microarray chip containing 16,463 oligoclones were uploaded to GeneGo MetaCore software for pathway analyses and function catalogue. The comparison of specific pathways and functions crosstalk between different groups were analyzed to reveal the underlying additive and synergistic pharmacological variations. Results Additive BJ and synergistic JU were more effective than monotherapies of BA, JA, and UA, while CM was ineffective. Compared with monotherapies, 43 pathways and six functions were found uniquely in BJ group, with 33 pathways and three functions in JU group. We found six overlapping pathways and six overlapping functions between BJ and JU groups, which mainly involved central nervous system development. Thirty-seven specific pathways and 10 functions were activated by additive BJ, which were mainly related to cell adhesion and G-protein signaling; and 27 specific pathways and three functions of synergistic JU were associated with regulation of metabolism, DNA damage, and translation. The overlapping and distinct pathways and functions may contribute to different additive and synergistic effects. Conclusion The divergence pathways of pure additive effect of BJ were mainly related to cell adhesion and G-protein signaling, while the pure synergistic mechanism of JU depended on metabolism, translation and DNA damage. Such a systematic analysis of pathways may provide an important paradigm to reveal the pharmacological mechanisms underlying drug combinations.
Collapse
Affiliation(s)
- Penglu Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Kamel NA, El-Tayeb WN, El-Ansary MR, Mansour MT, Aboshanab KM. XDR- Klebsiella pneumoniae isolates harboring blaOXA-48: In vitro and in vivo evaluation using a murine thigh-infection model. Exp Biol Med (Maywood) 2019; 244:1658-1664. [PMID: 31665915 DOI: 10.1177/1535370219886826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Blood stream infection with extensively drug-resistant-carbapenamase producing Klebsiella (K.) pneumoniae usually represents a major threat with medical challenges among hospitalized cancer patients with poor functional status and underlying diseases. Accordingly, the aim of the study was to evaluate the efficacy of different antibiotics either alone or in combinations against extensively drug-resistant-OXA-48 producing K. pneumoniae clinical isolates that were previously recovered from febrile neutropenic pediatric cancer patients. The antimicrobial activity of amikacin, gentamicin, colistin, ertapenem, imipenem, meropenem and tigecycline was assessed by broth microdilution method. The results revealed that all the tested OXA-48 producing K. pneumoniae isolates exhibited extensively drug-resistant phenotype and all of them were susceptible to tigecycline. Checkerboard method was used to determine the fraction inhibitory concentration index, to further classify the effect of antibiotic combination as synergistic, additive, indifferent, or antagonistic effect. The results revealed that in vitro dual carbapenem combination of ertapenem with meropenem had shown synergistic effect against all of the tested isolates. Additionally, synergistic effect of meropenem with colistin was detected among three of four isolates tested. Herein we investigated the in vivo activity of colistin, meropenem alone and in combination in a rat thigh infection model. The results showed that addition of meropenem to colistin was not effective at reduction of bacterial count as compared to colistin alone at 24 h post treatment. Accordingly, we can conclude that in vitro antibiotic combinations of dual carbapenems (ertapenem plus meropenem) and meropenem plus colistin showed synergism in 100% and 75% of the tested isolates, respectively. Colistin alone had significantly reduced bacterial count while its combination with meropenem was not superior to monotherapy in murine thigh infection model. Impact statement The present study aimed to evaluate the effectiveness of various antibiotics both in vitro and in vivo using murine animal model either alone or in combination against various strains of extensively drug-resistant (XDR) Klebsiella pneumoniae, life-threatening pathogens of relevant medical importance isolated from febrile neutropenic pediatric cancer patients. This work also emphasizes how to select the appropriate antibiotics options and help the physicians to choice the appropriate antibiotic for the treatment of such superbugs (extensively drug-resistant (XDR) Klebsiella pneumoniae). The results showed that in vitro dual carbapenem combination of ertapenem with meropenem had shown synergistic effect against all of the tested XDR isolates. Antibiotic combinations of dual carbapenems and meropenem plus colistin showed synergism in 100% and 75% of the testes isolates, respectively. Results of the in vivo evaluation, colistin alone had significantly reduced bacterial count while its combination with meropenem was not superior to monotherapy.
Collapse
Affiliation(s)
- Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt
| | - Wafaa N El-Tayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Modern University for Technology and Information, Cairo 11566, Egypt
| | - Mohamed T Mansour
- Department of Virology and Immunology, 57357 Children's Cancer Hospital, Cairo University, Cairo 19057, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Ding B, Ding Q, Zhang S, Jin Z, Wang Z, Li S, Dou X. Characterization of the anti-Staphylococcus aureus fraction from Penthorum chinense Pursh stems. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:219. [PMID: 31419969 PMCID: PMC6697954 DOI: 10.1186/s12906-019-2632-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in hospitals. Penthorum chinense Pursh (PCP), employed by the Miao ethnic minority in China, presents antibacterial activities. In this study, the anti-Staphylococcus aureus activities in the pinocembrin-7-O residue-rich fraction from PCP (PGF) were evaluated and characterized. Methods The PGF was prepared with 70% ethanol reflux extraction followed by fractional extraction and column chromatography. Pinocembrin-7-O residue components were identified with electrospray ionization mass spectrometry (ESI-MS). Anti-S. aureus activities of the fraction and the main components were evaluated in vitro with serially diluted microbroth assays. Cytotoxicity was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) chromogenic assays using the NCTC 1469 cell line. Results This study indicated that the PGF and three components (S1, S2, and S3) presented anti-S. aureus activities, including against clinically isolated MRSA strains. The molecular masses of S1, S2, and S3 were identical to those of pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl (HHDP)]-β-D-glucose, pinocembrin-7-O-[3″-O-galloyl-4″,6″-(s)-HHDP]-β-D-glucose, and Thonningianin A, respectively. The PGF, S1, S2, and S3 all presented an identical minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 and ATCC 43300, which was 62.5 μg/mL. The minimum bactericidal concentrations (MBCs) of the PGF and S3 against ATCC 25923 were 125 and 250 μg/mL, and the MBCs of the PGF, S2, and S3 against ATCC 43300 were 250, 500, and 250 μg/mL, respectively. A time-kill assay consistently indicated that none of the bacterial clones of ATCC 25923 and ATCC 43300 could survive under 2× and 4× MIC PGF treatment for 24 h, respectively. In contrast, 104 CFU (colony-forming units) of ATCC 25923 and ATCC 43300 were killed by 8× and 4× MIC S3 within 24 h, respectively. Additionally, 1×, 2×, and 4× MIC the PGF presented similar postantibiotic effects (PAEs) on the strain ATCC 25923. However, the PAE of the PGF on the strain ATCC 43300 was concentration dependent (1× < 2× < 4× MIC). Finally, the PGF (200 μg/mL) and S3 (60 μg/mL) showed no cytotoxicity against human hepatoma cells. Conclusions The PGF and S3 from PCP present potential for the treatment of S. aureus and MRSA infections. The components S1 and S2 present inhibition activities against S. aureus.
Collapse
|
7
|
Chen C, Liu Y, Sun L, Chen G, Wu X, Ren J, Zhao Y. Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:2155-2161. [PMID: 35030654 DOI: 10.1021/acsabm.9b00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuanjin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|