1
|
Tone K, Nagano Y, Sakamoto K, Komori A, Tamura T, Alshahni MM, Kobayashi T, Masaki T, Araya J, Makimura K. First Identification of Domestic Clade I Candida auris in Japanese Otitis Externa Patients Without Travel History. Med Mycol J 2025; 66:21-25. [PMID: 40024790 DOI: 10.3314/mmj.24-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BACKGROUND Candida auris is an emerging fungus causing nosocomial infections and outbreaks, with many strains exhibiting multidrug resistance. This study analyzed the C. auris clinical isolates at The Jikei University School of Medicine Kashiwa Hospital from December 2019 to March 2021. METHODS Clinical data were reviewed retrospectively for patients from whom C. auris was isolated from clinical specimens. Clade analysis and drug susceptibility testing were conducted. RESULTS Three strains of C. auris were isolated, all from otorrhea in patients with otitis externa. Case A was a 69-year-old female with aural pain, Case B was an 82-year-old female with left ear deafness, and Case C was a 76-year-old male with left otorrhea and hearing loss; all cases were immunocompetent. Strains from Clade I (South Asian clade) were found in Cases A and C, and a strain from Clade II (East Asian clade) was isolated from Case B. None had a travel history overseas or contact with foreigners. Drug susceptibility testing showed that one C. auris strain of Clade Ⅰ had a high minimal inhibitory concentration for fluconazole. No severe infection was observed, and all cases improved with local treatment, including ketoconazole ointment for Case A. CONCLUSION The presence of Clade I C. auris strains in Japan without travel history raises concerns about domestic or in-hospital transmission. Accurate identification and rigorous infection control are essential to manage the spread of C. auris. Ongoing surveillance, research, and international cooperation are needed.
Collapse
Affiliation(s)
- Kazuya Tone
- Department of Respiratory Medicine, The Jikei University School of Medicine Kashiwa Hospital
| | - Yuko Nagano
- Clinical Central Laboratory, The Jikei University School of Medicine Kashiwa Hospital
| | - Kazumi Sakamoto
- Clinical Central Laboratory, The Jikei University School Katsushika Medical Center
| | - Aya Komori
- Teikyo University Institute of Medical Mycology
| | | | | | - Toshiki Kobayashi
- Department of Otorhinolaryngology / Head and Neck Surgery, The Jikei University School of Medicine Kashiwa Hospital
| | - Takahiro Masaki
- Clinical Central Laboratory, The Jikei University School of Medicine Kashiwa Hospital
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine
| | | |
Collapse
|
2
|
Peng Y, Liu Y, Yu X, Fang J, Guo Z, Liao K, Chen P, Guo P. First report of Candida auris in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerg Microbes Infect 2024; 13:2300525. [PMID: 38164742 PMCID: PMC10773663 DOI: 10.1080/22221751.2023.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xuegao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingchun Fang
- Department of Clinical Microbiology Laboratory, Nansha Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaowang Guo
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Izumi H, Nafie LA, Dukor RK. Effect of Conformational Variability on the Drug Resistance of Candida auris ERG11p and FKS1. ACS OMEGA 2024; 9:19816-19823. [PMID: 38737078 PMCID: PMC11080008 DOI: 10.1021/acsomega.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024]
Abstract
Candida auris infection has been recognized as an urgent threat to antifungal drug resistance, and the Eagle effect of C. auris FKS1 (1,3-β-d-glucan synthase) wild-type isolates has also been noted. The Eagle effect, namely, where higher concentrations of antifungals reduce fungicidal activity relative to lower concentrations, is a confounding factor of apparent antifungal resistance, but the detailed mechanism remains unclear. Here, we present the conformational variability of mutation sites for ERG11p (lanosterol 14α-demethylase) and FKS1 from deep neural network-based prediction along with the reported X-ray crystallographic and cryo-electron microscopy (cryo-EM) structures of antifungals. The sequence variability maps provide valuable insights into the inconsistent correlation between azole resistance and the mysterious Eagle effect with the dispersion of minimal inhibitory concentration (MIC) for echinocandin resistance. The conformational variability prediction supports the hypothesis that mutations K143R of clade I, VF125AL of clade III, and Y132F of clade IV for C. auris ERG11p make the corresponding site variable and that an increased population of invisible variable conformations potentially contributes to triazole resistance. In contrast, the predicted rigid conformation by the S639F mutation of hot spot region 1 (HS1) for FKS1 suggests that caspofungin (CAS) is involved in an uncompetitive inhibition, and a decreased population of the CAS-bound state of FKS1 with Rho1 leads to drug resistance. The predicted variable HS1 region for FKS1 WT isolates and the rigid one for FKS1 S639F mutants support the in vivo drug response and the in vitro MIC dispersion. A plausible mechanism of the Eagle effect is hereby proposed, namely, that a high concentration of CAS with a high membrane affinity reduces the population of the CAS-bound state of FKS1 with Rho1, as well as accompanying events such as aggregation or association depending on the conformational variability of HS1.
Collapse
Affiliation(s)
- Hiroshi Izumi
- National
Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, Tsukuba Ibaraki 305-8569, Japan
| | - Laurence A. Nafie
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244-4100, United
States
- BioTools
Inc., Bee Line Hwy, Jupiter, Florida 33458, United States
| | - Rina K. Dukor
- BioTools
Inc., Bee Line Hwy, Jupiter, Florida 33458, United States
| |
Collapse
|
4
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé-Patiño G, Aviña-Padilla K, Velasco-Pareja MC, Yasnot MF. Transcriptional Reprogramming of Candida tropicalis in Response to Isoespintanol Treatment. J Fungi (Basel) 2023; 9:1199. [PMID: 38132799 PMCID: PMC10744401 DOI: 10.3390/jof9121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Candida tropicalis, an opportunistic pathogen, ranks among the primary culprits of invasive candidiasis, a condition notorious for its resistance to conventional antifungal drugs. The urgency to combat these drug-resistant infections has spurred the quest for novel therapeutic compounds, with a particular focus on those of natural origin. In this study, we set out to evaluate the impact of isoespintanol (ISO), a monoterpene derived from Oxandra xylopioides, on the transcriptome of C. tropicalis. Leveraging transcriptomics, our research aimed to unravel the intricate transcriptional changes induced by ISO within this pathogen. Our differential gene expression analysis unveiled 186 differentially expressed genes (DEGs) in response to ISO, with a striking 85% of these genes experiencing upregulation. These findings shed light on the multifaceted nature of ISO's influence on C. tropicalis, spanning a spectrum of physiological, structural, and metabolic adaptations. The upregulated DEGs predominantly pertained to crucial processes, including ergosterol biosynthesis, protein folding, response to DNA damage, cell wall integrity, mitochondrial activity modulation, and cellular responses to organic compounds. Simultaneously, 27 genes were observed to be repressed, affecting functions such as cytoplasmic translation, DNA damage checkpoints, membrane proteins, and metabolic pathways like trans-methylation, trans-sulfuration, and trans-propylamine. These results underscore the complexity of ISO's antifungal mechanism, suggesting that it targets multiple vital pathways within C. tropicalis. Such complexity potentially reduces the likelihood of the pathogen developing rapid resistance to ISO, making it an attractive candidate for further exploration as a therapeutic agent. In conclusion, our study provides a comprehensive overview of the transcriptional responses of C. tropicalis to ISO exposure. The identified molecular targets and pathways offer promising avenues for future research and the development of innovative antifungal therapies to combat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Gilmar Santafé-Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Katia Aviña-Padilla
- Center for Research and Advanced Studies of the I.P.N. Unit Irapuato, Irapuato 36821, Mexico;
| | - María Camila Velasco-Pareja
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| | - María Fernanda Yasnot
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| |
Collapse
|
5
|
Kurakado S, Matsumoto Y, Sugita T. Comparing the virulence of four major clades of Candida auris strains using a silkworm infection model: Clade IV isolates had higher virulence than the other clades. Med Mycol 2023; 61:myad108. [PMID: 37898558 DOI: 10.1093/mmy/myad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023] Open
Abstract
Candida auris is an emerging fungal pathogen that is feared to spread of infection because of its propensity for multidrug resistance and high mortality rate. This pathogenic yeast is classified into four major clades by phylogenetic analyses, which are referred to the South Asia clade (clade I), East Asia clade (clade II), South Africa clade (clade III), and South America clade (clade IV), based on the location of the initial isolate. In this study, we evaluated the virulence of C. auris strains belonging to four major clades and the therapeutic effects of micafungin in a silkworm infection model. The highest mortality rate at 21 h after C. auris inoculation was observed for strains from clade IV (80% or more). In contrast, it was 20% or less in those from other clades. Antifungal susceptibility tests indicated resistance to fluconazole and sensitivity to echinocandins in the blood-derived strains. Micafungin prolonged the survival of blood-derived C. auris infected silkworms. These results suggest that the silkworm infection model is useful for evaluating the virulence of C. auris and determining its therapeutic effects.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|